Physics Class Notes

Click Here To Watch The Video

Parallel Connection

Parallel connection of resistors is shown below

The effective resistance of the parallel combination, $1/R = 1/R_1 + 1/R_2$

or $R = R_1 \cdot R_2 / (R_1 + R_2)$

When 'n' resistors of equal resistance $\mathbf{r} \, \Omega$ are connected in parallel, the effective resistance, $\mathbf{R}=\mathbf{r}/\mathbf{n}$ **Features**

- Effective resistance decreases with the increase of the number of resistors.
- Large current flows through small resistance and small current through large resistance. (Current is different)
- Same potential difference will be available at all resistors.
- When a number of resistors are connected in parallel, the effective resistance will be less than the least one among them.

Problem

- 1. It is given 5Ω , 20Ω resistors and 10V battery
 - a. What is the effective resistance of the circuit?
 - b. What is the current in the circuit?

Ans:

a.
$$R=R_1.R_2/(R_1+R_2)=5\times 20/(5+20)=100/25=4\Omega$$

b. $I=V/R=10/4=2.5A$

Home Work

1.Calculate the effective resistance of the circuit.

- 2. 20 resistors of 2Ω each are connected in parallel. Calculate the effective resistance.
- 3. when a 6Ω and a 3Ω resistors are connected in parallel to a 12V battery. Calculate the effective resistance and current in the circuit.