

Activity 1

Consider the sequence of natural numbers.

1,2,3,4,5,...

10 th term	10
50 th term	50
100 th term	100
199 th term	199
n th term	n

Algebraic form of the sequence of natural numbers = n

Activity 2

Consider the sequence of even numbers .

2,4,6,8,10,...

First term	2 x 1 = 2
Second term	2 x 2 = 4
Fifth term	2 x 5 = 10
10 th term	2 x 10 = 20
50 th term	2 x 50 = 100
100 th term	2 x 100 = 200
n th term	2 x n

Algebraic form of the sequence of even numbers = 2 n

Even numbers are the numbers obtained by multiplying natural numbers by 2

Activity 3

Consider the sequence of odd numbers.

1, 3, 5, 7, 9, ...

First term	2-1=1	$2 \ge 1 - 1 = 2 - 1 = 1$
Second term	4 - 1 = 3	$2 \times 2 - 1 = 4 - 1 = 3$
Fifth term	10-1 = 9	$2 \times 5 - 1 = 10 - 1 = 9$
10 th term	20 - 1 = 19	2 x 10 - 1 = 20 - 1 = 1 9
50 th term	100 - 1 = 99	2 x 50 - 1 = 100 - 1 = 99
n th term	2 <i>n</i> - 1	$2 \times n - 1$

Algebraic form of the sequence of odd numbers = 2 n-1

The sequence of odd numbers got by multiplying natural numbers by 2 and subtracting 1

Activity 4

Consider the sequence of multiples of 5.

5, 10, 15, 20, 25, ...

First term	5 x 1 = 5
Second term	$5 \times 2 = 10$
Fifth term	5 x 5 = 25
10 th term	5 x 10 = 50
50 th term	$5 \times 50 = 250$
100 th term	5 x 100 = 500
n th term	5 x n

Algebraic form of the sequence of multiples of 5 = 5 n

Multiples of 5 are the numbers obtained by multiplying natural numbers by 5

<u>Activity 5</u>

	Number sequence	Algebraic form
Multiples of 3	3,6,9,	3 n
Multiples of 4	4,8,12,	4 <i>n</i>
Multiples of 6	6,12,18,	6 <i>n</i>
Multiples of 7	7,14,21,	7 <i>n</i>
Multiples of 10	10,20,30,	10 <i>n</i>

Findings

>>

	Number sequence	Common difference	Algebraic form
Natural numbers	1,2,3,	1	n
Even numbers	2,4,6,	2	2 <i>n</i>
Odd numbers	1,3,5,	2	2 n - 1
Multiples of 5	5,10,15,	5	5 n
Multiples of 3	3,6,9,	3	3 n
Multiples of 4	4,8,12,	4	4 n
Multiples of 6	6,12,18,	6	6 n
Multiples of 7	7,14,21,	7	7 <i>n</i>
Multiples of 10	10,20,30,	10	10 <i>n</i>

The coefficient of n in the algebraic form of each arithmetic sequence is its common difference .

NOTE :

>

The sequence obtained by multiplying natural numbers by a fixed number and adding or subtracting a fixed number is an arithmetic sequence .

<u>Activity 6</u>

	Number sequence .
Multiples of 5	5,10,15,20,25,
Add 1 to the multiples of 5	6, 11, 16, 21, 26,

First term	$5 \times 1 + 1 = 5 + 1 = 6$
Second term	5 x 2 + 1 = 10 + 1 = 11
Fifth term	$5 \times 5 + 1 = 25 + 1 = 26$
10 th term	5 x 10 + 1 = 50 + 1 = 51
50 th term	5 x 50 + 1 = 250 + 1 = 251
100 th term	5 x 100 + 1 = 500 + 1 = 501
n th term	$5 \ge n + 1 = 5 n + 1$

Consider the sequence obtained by adding 1 to the multiples of 5.

Algebraic form of this sequence = 5n + 1

Activity 7

	Number sequence .
Multiples of 3	3,6,9,12,15,
Add 2 to the multiples of 3	5,8,11,14,17,

Consider the sequence obtained by adding 2 to the multiples of 3.

First term	$3 \times 1 + 2 = 3 + 2 = 5$
Second term	$3 \times 2 + 2 = 6 + 2 = 8$
Fifth term	3 x 5 + 2 = 15 + 2 = 17
10 th term	$3 \ge 10 + 2 = 30 + 2 = 32$
50 th term	3 x 50 + 2 = 150 + 2 = 152
100 th term	3 x 100 + 2 = 300 + 2 = 302
$n^{ m th}$ term	$3 \ge n + 2 = 3 n + 2$

Algebraic form of this sequence = 3 n + 2

Activity 8

	Number sequence .
Multiples of 3	3,6,9,12,15,
Subtract 1 from the multiples of 3	2,5,8,11,14,

Consider the sequence of obtained by subtracting 1 from the multiples of 3.

First term	$3 \times 1 - 1 = 3 - 1 = 2$
Second term	$3 \times 2 - 1 = 6 - 1 = 5$
Fifth term	$3 \times 5 - 1 = 15 - 1 = 14$
10 th term	$3 \times 10 - 1 = 30 - 1 = 29$
50 th term	$3 \times 50 - 1 = 150 - 1 = 149$
100 th term	3 x 100 - 1 = 300 - 1 = 299
n th term	$3 \ge n-1 = 3 n - 1$

Algebraic form of this sequence = 3n - 1

Findings

- The terms of the arithmetic sequence 6, 11, 16, 21, 26, ... are obtained by adding 1 to the multiples of the common difference.
- Algebraic form of the arithmetic sequence 6, 11, 16, 21, 26, ... is 5n + 1
- The terms of the arithmetic sequence 5, 8, 11, 14, 17, . . . are obtained by adding 2 to the multiples of common difference .
- Algebraic form of the arithmetic sequence 5, 8, 11, 14, 17, ... is 3n + 2
- The terms of the arithmetic sequence 2, 5, 8, 11, 14, . . . are obtained by

subtracting 1 from the multiples of the common difference .

Algebraic form of the arithmetic sequence 2, 5, 8, 11, 14, ... is 3n-1

Each term of an arithmetic sequence is got by multiplying the position number by the common difference and adding or subtracting a fixed number .

Terms of an arithmetic sequence are got by multiplying natural numbers by the common difference and adding or subtracting fixed number .

The coefficient of n in the algebraic form of an arithmetic sequence is its common difference .

Conclusion

The algebraic form of any arithmetic sequence is of the form a n + b, where a and b are fixed numbers . a is the common difference .

Activity 9

NOTE :

The n^{th} term of a sequence is its general form .

The *n*th term of a sequence is also called its *algebraic form*.

If the first term of an arithmetic sequence is f and its common difference is d, then

Second term = f + dThird term = f + 2 dFourth term = f + 3 d

Fifth tetrm = f + 4 d

$$n^{\text{th}}$$
 term = $f + (n - 1) d$

That is , n^{th} term is obtained by adding (n– 1) times common difference to the first term .

NOTE :

★ nth term = f + (n - 1) d = f + n x d - d = f + dn - d = dn + f - d
★ If the first term of an arithmetic sequence is f and its common difference is d, then its nth term is dn + f - d.

Algebraic of any arithmetic sequence is of the form a n + b

(a=d, b=f-d)

Activity <u>10</u>

What is the algebraic form of the arithmetic sequence 2, 5, 8, ...

<u>Answer</u>

$$n^{\text{th}}$$
 term = $dn + f - d$ ($f = 2$, $d = 5 - 2 = 3$)

$$= 3 \times n + 2 - 3 = 3 n - 1$$

(Here the common difference is 3 . The terms of this sequence got by subtracting 2 from the multiples of 3 .By this way also we can find the algebraic form without using formula) <u>Activity 11</u>

Consider the sequence of natural numbers which leave a remainder 2 on division by 3.

a) Write down the sequence .

b) What is the algebraic form of this sequence ?

Answer

a) 2,5,8,...
$$(f=2, d=5-2=3)$$

b)
$$n^{\text{th}}$$
 term = $dn + f - d = 3 \times n + 2 - 3 = 3n - 1$

More activity

Consider the sequence of natural numbers which leave a remainder 1 on division by 4.

a) Write down the sequence .

b) What is the algebraic form of this sequence ?