ONLINE MATHS CLASS - X - 08 (05 / $07 / 2021$)

1. ARITHMETIC SEQUENCE - CLASS 6

What did we study in the last class ?

Each term of a sequence is related to its position.
The $n^{\text {th }}$ term of a sequence is its general form .
*The $n^{\text {th }}$ term of a sequence is also called its algebraic form .
An arithmetic sequence is a sequence in which we get the same number on subtracting from any term , the term immediately preceding it .

* The difference between any two terms of an arithmetic sequence is the product of the difference of positions and the common difference
- Common difference $=\frac{\text { Term difference }}{\text { Position difference }}$

Activity 1

Consider the sequence of natural numbers . $1,2,3,4,5, \ldots$

$10^{\text {th }}$ term	10
$50^{\text {th }}$ term	50
$100^{\text {th }}$ term	100
$199^{\text {th }}$ term	199
$n^{\text {th }}$ term	n

Algebraic form of the sequence of natural numbers $=n$

Activity 2

Consider the sequence of even numbers .

$$
2,4,6,8,10, \ldots
$$

First term	$2 \times 1=2$
Second term	$2 \times 2=4$
Fifth term	$2 \times 5=10$
$10^{\text {th }}$ term	$2 \times 10=20$
$50^{\text {th }}$ term	$2 \times 50=100$
$100^{\text {th }}$ term	$2 \times 100=200$
$n^{\text {th }}$ term	$2 \times n$

$$
\text { Algebraic form of the sequence of even numbers }=2 n
$$

Even numbers are the numbers obtained by multiplying natural numbers by 2

Activity 3

Consider the sequence of odd numbers .
$1,3,5,7,9, \ldots$

First term	$2-1=1$	$2 \times 1-1=2-1=1$
Second term	$4-1=3$	$2 \times 2-1=4-1=3$
Fifth term	$10-1=9$	$2 \times 5-1=10-1=9$
$10^{\text {th }}$ term	$20-1=19$	$2 \times 10-1=20-1=19$
$50^{\text {th }}$ term	$100-1=99$	$2 \times 50-1=100-1=99$
$n^{\text {th }}$ term	$2 n-1$	$2 \times n-1$

$$
\text { Algebraic form of the sequence of odd numbers }=2 n-1
$$

The sequence of odd numbers got by multiplying natural numbers by 2 and subtracting 1

Activity 4

Consider the sequence of multiples of 5 .
$5,10,15,20,25, \ldots$

First term	$5 \times 1=5$
Second term	$5 \times 2=10$
Fifth term	$5 \times 5=25$
$10^{\text {th }}$ term	$5 \times 10=50$
$50^{\text {th }}$ term	$5 \times 50=250$
$100^{\text {th }}$ term	$5 \times n$
$n^{\text {th }}$ term	

Algebraic form of the sequence of multiples of $5=5 n$
Multiples of 5 are the numbers obtained by multiplying natural numbers by 5

Activity 5

	Number sequence	Algebraic form
Multiples of 3	$3,6,9, \ldots$	$3 n$
Multiples of 4	$4,8,12, \ldots$	$4 n$
Multiples of 6	$6,12,18, \ldots$	$6 n$
Multiples of 7	$7,14,21, \ldots$	$7 n$
Multiples of 10	$10,20,30, \ldots$	$10 n$

Findings

	Number sequence	Common difference	Algebraic form
Natural numbers	1,2,3,...	1	n
Even numbers	2,4,6,...	2	$2 n$
Odd numbers	1,3,5,...	2	2n-1
Multiples of 5	5,10,15, . .	5	$5 n$
Multiples of 3	3,6,9,...	3	$3 n$
Multiples of 4	4,8,12,...		$4 n$
Multiples of 6	6,12,18, ..	6	$6 n$
Multiples of 7	7,14, 21,	7	$7 n$
Multiples of 10	10, 20, 30, .	10	$10 n$

The coefficient of n in the algebraic form of each arithmetic sequence is its common difference .

NOTE :

The sequence obtained by multiplying natural numbers by a fixed number and adding or subtracting a fixed number is an arithmetic sequence .

Activity 6

	Number sequence.
Multiples of 5	$5,10,15,20,25, \ldots$
Add 1 to the multiples of 5	$6,11,16,21,26, \ldots$

Consider the sequence obtained by adding 1 to the multiples of 5 .

First term	$5 \times 1+1=5+1=6$
Second term	$5 \times 2+1=10+1=11$
Fifth term	$5 \times 5+1=25+1=26$
$10^{\text {th }}$ term	$5 \times 10+1=50+1=51$
$50^{\text {th }}$ term	$5 \times 50+1=250+1=251$
$100^{\text {th }}$ term	$5 \times n+1=5 n+1$
$n^{\text {th }}$ term	

Algebraic form of this sequence $=5 n+1$

Activity 7

	Number sequence.
Multiples of 3	$3,6,9,12,15, \ldots$
Add 2 to the multiples of 3	$5,8,11,14,17, \ldots$

Consider the sequence obtained by adding 2 to the multiples of 3 .

First term	$3 \times 1+2=3+2=5$
Second term	$3 \times 2+2=6+2=8$
Fifth term	$3 \times 5+2=15+2=17$
$10^{\text {th }}$ term	$3 \times 10+2=30+2=32$
$50^{\text {th }}$ term	$3 \times 100+2=300+2=302$
$100^{\text {th }}$ term	$3 \times n+2=3 n+2$
$n^{\text {th }}$ term	

$$
\text { Algebraic form of this sequence }=3 n+2
$$

Activity 8

	Number sequence.
Multiples of 3	$3,6,9,12,15, \ldots$
Subtract 1 from the multiples of 3	$2,5,8,11,14, \ldots$

Consider the sequence of obtained by subtracting 1 from the multiples of 3 .

First term	$3 \times 1-1=3-1=2$
Second term	$3 \times 2-1=6-1=5$
Fifth term	$3 \times 5-1=15-1=14$
$10^{\text {th }}$ term	$3 \times 10-1=30-1=29$
$50^{\text {th }}$ term	$3 \times 50-1=150-1=149$
$100^{\text {th }}$ term	$3 \times n-1=3 n-1$
$n^{\text {th }}$ term	

Algebraic form of this sequence $=3 n-1$

Findings

The terms of the arithmetic sequence $6,11,16,21,26, \ldots$ are obtained by adding 1 to the multiples of the common difference .
$>$ Algebraic form of the arithmetic sequence $6,11,16,21,26, \ldots$ is $5 n+1$
$>$ The terms of the arithmetic sequence $5,8,11,14,17, \ldots$ are obtained by adding 2 to the multiples of common difference .
$>$ Algebraic form of the arithmetic sequence $5,8,11,14,17, \ldots$ is $3 n+2$

The terms of the arithmetic sequence $2,5,8,11,14$, . . are obtained by subtracting 1 from the multiples of the common difference .
\geqslant Algebraic form of the arithmetic sequence $2,5,8,11,14, \ldots$ is $3 n-1$
D Each term of an arithmetic sequence is got by multiplying the position number by the common difference and adding or subtracting a fixed number .
$>$ Terms of an arithmetic sequence are got by multiplying natural numbers by the common difference and adding or subtracting fixed number .

The coefficient of n in the algebraic form of an arithmetic sequence is its common difference .

Conclusion

The algebraic form of any arithmetic sequence is of the form $a n+\mathbf{b}$, where \boldsymbol{a} and \boldsymbol{b} are fixed numbers . a is the common difference .

Activity 9

NOTE :

The $n^{\text {th }}$ term of a sequence is its general form . The $\boldsymbol{n}^{\text {th }}$ term of a sequence is also called its algebraic form .

If the first term of an arithmetic sequence is f and its common difference is d, then

$$
\begin{aligned}
& \text { Second term }=f+d \\
& \text { Third term }=f+2 d \\
& \text { Fourth term }=f+3 d \\
& \text { Fifth tetrm }=f+4 d \\
& \qquad \cdot \quad \cdot \\
& n^{\text {th }} \text { term }=f+(n-1) d
\end{aligned}
$$

That is,$n^{\text {th }}$ term is obtained by adding ($n-1$) times common difference to the first term .

NOTE :

$n^{\text {th }}$ term $=f+(n-1) d=f+n \times d-d=f+d n-d=d n+f-d$
If the first term of an arithmetic sequence is \boldsymbol{f} and its common difference is \boldsymbol{d}, then its $n^{\text {th }}$ term is $d n+f-d$.

Algebraic of any arithmetic sequence is of the form $a \mathbf{n}+b$

$$
(a=d \quad, \quad b=f-d \quad)
$$

Activity 10

What is the algebraic form of the arithmetic sequence $2,5,8, \ldots$
Answer

$$
\begin{array}{rlr}
n^{\text {th }} \text { term } & =d n+f-d \quad(f=2, d=5-2=3) \\
& =3 \times n+2-3=3 n-1
\end{array}
$$

(Here the common difference is 3 . The terms of this sequence got by subtracting 2 from the multiples of 3 .By this way also we can find the algebraic form without using formula)

Activity 11

Consider the sequence of natural numbers which leave a remainder 2 on division by 3 .
a) Write down the sequence .
b) What is the algebraic form of this sequence ?

Answer
a) $2,5,8, \ldots$
$(f=2, d=5-2=3)$
b) $n^{\text {th }}$ term $=d n+f-d=3 \times n+2-3=3 n-1$

More activity

Consider the sequence of natural numbers which leave a remainder 1 on division by 4 .
a) Write down the sequence .
b) What is the algebraic form of this sequence ?

