## PHYSICS - X-PART-7 CLASS 07



## Mathematical problems which are related to Joules Law.

1. How much will be the heat developed if 0.2 A current flows through a conductor of resistance $200 \Omega$ for 5 minute?
Current $\quad \mathrm{I}=0.2 \mathrm{~A}$
Resistance $\mathrm{R}=200 \Omega$
Time
$\mathrm{t}=5 \times 60=300 \mathrm{~s}$
Heat $\quad \mathrm{H}=$ ?

$$
\begin{aligned}
H & =I^{2} R t \\
& =(0.2)^{2} \times 200 \times 300 \\
& =2400 \mathrm{~J}
\end{aligned}
$$

* If 4.2 J is one calorie then $\mathrm{H}=2400 / 4.2=571.4$ calorie

2. Find out the heat developed in 3 minute by a device of resistance $920 \Omega$ working under 230 V

| Resistance | $\mathrm{R}=920 \Omega$ | Ohm's law R = V/I |
| :---: | :---: | :---: |
| Voltage | $\mathrm{V}=230 \mathrm{~V}$ | $\mathrm{I}=\mathrm{V} / \mathrm{R}$ |
| Time | $\mathrm{t}=3 \mathrm{x} 60=180 \mathrm{~s}$ | $=230 / 920=0.25 \mathrm{~A}$ |
| Heat | $\mathrm{H}=$ ? | $\mathrm{H}=$ ? |
|  | $H=\left(V^{2} / R\right) t$ | $H=I^{2} R t$ |
|  | $=\left(230^{2} / 920\right) \times 180$ | $=(0.25)^{2} \times 920 \times 180$ |
|  | $=10350 \mathrm{~J}$ | $=10350 \mathrm{~J}$ |

3. Let's calculate the heat developed when 3 A current flows through an electric iron box designed to work under 230 V for half an hour?
Current $\quad \mathrm{I}=3 \mathrm{~A}$
Voltage $\quad V=230 \mathrm{~V}$
Time $\quad t=30 \times 60=1800 \mathrm{~s}$
Heat $\quad \mathrm{H}=$ ?

$$
\begin{aligned}
H & =\text { Vit } \\
& =230 \times 3 \times 1800 \\
& =1242000 \mathrm{~J}
\end{aligned}
$$

## Assignment

1. Details of two electric heaters are given below. How much will be the heat developed if they are made to work for 5 minute each?

| Heater - A | Heater - B |
| :---: | :--- |
| Working voltage : 230 V | Working voltage : 230 V |
| Resistance $: 1150 \Omega$ | Resistance $: 460 \Omega$ |
| Working time $: 5$ minute | Working time $: 5$ minute |
|  |  |

- Why does the heater having low resistance get heated more?
- In which way does the change in resistance influence the heat developed?
- Find out the current in the heaters A and B and compare the heat developed.
- How do the resistors bring about a change in the current in the circuit?

