TEXT BOOK QUESTIONS - ARITHMETIC SEQUENCES

Page number : 21, 22
1 In each of the arithmetic sequences below, some terms are missing and their positions are marked with \bigcirc. Find them.
i) $24,42, \bigcirc, \bigcirc, \ldots$
ii) $\bigcirc, 24,42, \bigcirc, \ldots$
iii)

iv) $24, \bigcirc, 42, \bigcirc, \ldots$
v) $\bigcirc, 24, \bigcirc, 42, \ldots$
vi) $24, \bigcirc, \bigcirc, 42, \ldots$

Answer.
(i) $24,42,-----$, ,------ , . .

Common difference $=42-24=18$
$24,42,60,78, \ldots$
Third term $=$ Second term + common difference $=42+18=60$
Fourth term $=$ Third term + common difference $=60+18=78$
(ii) ----- , 24, 42 ,------ , .

Common difference $=42-24=18$

$$
6), 24,42,60
$$

```
First term = Second term - common difference = 24-18=6
Fourth term \(=\) Third term + common difference \(=42+18=60\)
```

(iii) -----, ----- , 24, 42 , . .

Common difference $=42-24=18$

```
-12 , 6 , 24,42, ..
```

Second term $=$ Third term - common difference $=24-18=6$
First term = second term - common difference =6-18=-12
(iv) 24 , ----- , 42 , ----- , . .
common difference $=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{3}-x_{1}}{3-1}=\frac{42-24}{3-1}=\frac{18}{2}=9$
$24,33,42,51, \ldots$
Second $=$ First term + common difference $=24+9=33$
Fourth term $=$ Third term + common differences $=42+9=51$
(v) ----, $24,-----42,$.
common difference $=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{4}-x_{2}}{4-2}=\frac{42-24}{4-2}=\frac{18}{2}=9$
$15,24,33,42, \ldots$
First term $=$ Second term - common difference $=24-9=15$
Third term $=$ Second term + common difference $=24+9=33$
(vi) 24 , ---- , ---- , 42 , . .
common difference $=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{4}-x_{1}}{4-1}=\frac{42-24}{4-1}=\frac{18}{3}=6$
$24,30,36,42, \ldots$

```
Second term \(=\) First term + common difference \(=24+6=30\)
Third term \(=\) Second term + common difference \(=30+6=36\)
```

2	The terms in two positions of some arithmetic sequences are given below. Write the first five terms of each: i) $3^{\text {rd }}$ term 34 ii) $3^{\text {rd }}$ term 43 iii) $3^{\text {rd }}$ term 2 $6^{\text {th }}$ term 67 $6^{\text {th }}$ term 76 $5^{\text {th }}$ term 3 iv) $4^{\text {th }}$ term 2 v) $2^{\text {nd }}$ term 5 $7^{\text {th }}$ term 3 $5^{\text {th }}$ term 2
	Answer. (i) $x_{3}=34, x_{6}=67$ $\text { common difference }=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{6}-x_{3}}{6-3}=\frac{67-34}{6-3}=\frac{33}{3}=11$ First term = Third term - 2 x common difference $=34-2 \times 11=34-22=12$ First five terms $=12,23,34,45,56$ (ii) $x_{3}=43, x_{6}=76$ $\text { common difference }=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{6}-x_{3}}{6-3}=\frac{76-43}{6-3}=\frac{33}{3}=11$ First term = Third term - 2 x common difference $=43-2 \times 11=43-22=21$ First five terms $=21,32,43,54,65$ (ii) $x_{3}=2, x_{5}=3$ $\text { common difference }=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{5}-x_{3}}{5-3}=\frac{3-2}{5-3}=\frac{1}{2}$ First term $=$ Third term $-2 \times$ common difference $=2-2 \times \frac{1}{2}=2-1=1$ First five terms $=1,1 \frac{1}{2}, 2,2 \frac{1}{2}, 3, \ldots$

	(iv) $x_{4}=2, x_{7}=3$ $\text { common difference }=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{7}-x_{4}}{7-4}=\frac{3-2}{7-4}=\frac{1}{3}$ First term = Fourth term - $3 x$ common difference $=2-3 \times \frac{1}{3}=2-1=1$ First five terms $=1,1 \frac{1}{3}, 1 \frac{2}{3}, 2,2 \frac{1}{3}, \ldots$ (v) $x_{2}=5, x_{5}=2$ $\text { common difference }=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{5}-x_{2}}{5-2}=\frac{2-5}{5-2}=\frac{-3}{3}=-1$ Fourth term = Second term - common difference $=5-(-1)=5+1=6$ First five terms $=6,5,4,3,2$
3	The $5^{\text {th }}$ term of an arithmetic sequence is 38 and the $9^{\text {th }}$ term is 66 . What is its $25^{\text {th }}$ term? Answer. $\begin{aligned} & x_{5}=38, x_{9}=66 \\ & \text { common difference }=\frac{\text { Term difference }}{\text { position difference }}=\frac{x_{9}-x_{5}}{9-5}=\frac{66-38}{9-5}=\frac{28}{4}=7 \\ & \begin{aligned} \mathbf{2 5}^{\text {th }} \text { term } & =5^{\text {th }} \text { term }+20 \times \text { common difference } \\ & =\mathbf{3 8}+\mathbf{2 0} \times 7=\mathbf{3 8}+\mathbf{1 4 0}=\mathbf{1 7 8} \end{aligned} \end{aligned}$
4	Is 101 a term of the arithmetic sequence $13,24,35, \ldots$? What about 1001?
	Answer. Common difference $=24-13=11$

2	7	12	17
6	10	14	18
10	13	16	19
14	16	18	20

In the table below, some arithmetic sequences are given with two numbers against each. Check whether each belongs to the sequence or not.

Sequence	Numbers	Yes/No
$11,22,33, \ldots$	123	
	132	
$12,23,34, \ldots$	100	
	1000	
$21,32,43, \ldots$	100	
	1000	
$\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \ldots$	3	
	4	

Answer .

Sequence	Numbers	Yes / No
$11,22,33, \ldots$	123	No
	132	Yes
$12,23,34, \ldots$	100	Yes
	1000	No
$21,32,43, \ldots$	100	No
	1000	Yes

