ONLINE MATHS CLASS - X - 06 (29 / 06 /2021)

1. ARITHMETIC SEQUENCE - CLASS 4

What did we study in the last class ?

★ A sequence got by starting with any number and adding a fixed number repeatedly is called an *arithmetic sequence* .

★An arithmetic sequence is a sequence in which we get the same number on subtracting from any term , the term immediately preceding it .

 \bigstar In an arithmetic sequence , we get the same number on subtracting from any term ,

the term immediately preceding it . This constant difference is called the *common*

difference of an arithmetic sequence .

Activity 1

First term of an arithmetic sequence is 30 and its second term is 50 . Find its common difference and third term ?

By adding common difference to the first term we get the second term of an arithmetic sequence .

Common difference = 50 - 30 = 20

Third term = Second term + common difference = 50 + 20 = 70

NOTE :

By adding common difference to the first term , we get the second term of an arithmetic sequence . Adding common difference once more we get the third term . That is , by adding two times the common difference to the first term , we get the third term .

(If we continue like this,

By adding three times the common difference to the first term , we get the fourth term By adding four times the common difference to the first term , we get the fifth term . By adding five times the common difference to the first term , we get the sixth term . By adding six times the common difference to the first term , we get the seventh term . By adding seven times the common difference to the first term , we get the eighth term By adding eight times the common difference to the first term , we get the ninth term . By adding nine times the common difference to the first term , we get the ninth term .

Activity 2

First term of an arithmetic sequence is 30 and its third term is 50 . Find its common difference and second term ?

By adding two times the common difference to the first term , we get the third term of an arithmetic sequence .

That is, by adding two times the common difference to 30, we get 50 here.

That is , two times the common difference = 50 - 30 = 20

Common difference =
$$\frac{20}{2}$$
 = 10

(Here 2 is the position difference of the terms . That is , term difference is two times the common difference or position difference x common difference .)

Second term = first term + common difference = 30 + 10 = 40

Activity 3

Third term of an arithmetic sequence is 30 and its seventh term is 50 . Find its common difference and write the sequence ?

(By adding common difference to the third term, we get the fourth term of an

arithmetic sequence .

SARATH AS, GHS ANCHACHAVADI, MALAPPURAM

By adding two times the common difference to the third term , we get the fifth term By adding three times the common difference to the third term , we get the sixth term By adding four times the common difference to the third term , we get the seventh term) Here , by adding four times the common difference to 30 , we get 50 .

That is , four times the common difference = 50 - 30 = 20

Common difference =
$$\frac{20}{4}$$
 = 5

(Here 4 is the position difference of the terms . That is , term difference is 4 times the common difference or position difference x common difference .)

By adding two times the common difference to the first term , we get the third term .

That is , if we subtract two times the common difference from third term , we get the first term .

First term = Third term - 2 x common difference

$$= 30 - 2 \times 5 = 30 - 10 = 20$$

Sequence = 20, 25, 30, 35, 40, . .

Activity 4

Tenth term of an arithmetic sequence is 30 and its twentieth term is 50.

Find its common difference and write the sequence ?

(By adding adding common difference to the 10th term , we get the 11th term of an arithmetic sequence .

By adding adding two times the common difference to the 10th term , we get the 12th term By adding adding three times the common difference to the 10th term , we get the 13th term By adding adding four times the common difference to the 10th term , we get the 14th term If we continue like this ,

By adding adding 10 times the common difference to the 10th term , we get the 20th term)

Here , by adding 10 times the common difference to 30 , we get 70 .

That is , 10 times the common difference = 70 - 30 = 40

Common difference =
$$\frac{40}{10}$$
 = 4

(Here 10 is the position difference of the terms . That is , term difference is 10 times the common difference or position difference x common difference)

By adding 9 times the common difference to the first term , we get the 10^{th} term .

That is , if we subtract 9 times the common difference from 10th term , we get the first

term.

First term = 10th term - 9 x common differences

$$= 30 - 9 \times 4 = 30 - 36 = -6$$

Sequence = -6, -2, 2, 6, 10, . . .

Finding

For any two terms of an arithmetic sequence,

term difference = position difference x common difference

Conclusion

The difference between any two terms of an arithmetic sequence is the product of the

difference of positions and the common difference

NOTE :

We can state the above finding in another way as follows

In an arithmetic sequence , term difference is proportional to position difference and

the constant of proportionality is the common difference .

Common difference

<u>Term difference</u> Position difference

SARATH A S, GHS ANCHACHAVADI, MALAPPURAM

<u>Activity 5</u>

Is 100 a term of the arithmetic sequence 4,7,10, ... ? Give reasons.

<u>Answer</u>

Common difference = 7 - 4 = 3

Term difference = $100 - 4 = 96 = 32 \times 3 = 32 \times \text{common difference}$

Here term difference is a multiple of the common difference . So 100 is a term of this sequence .

-

More Activity

 In each of the arithmetic sequences below, some terms are missing and their positions are marked with O. Find them.

i) 24, 42, (), (),	ii) (), 24, 42 , (),
iii) (), (), 24, 42,	iv) 24, (), 42, (),
v) (), 24, (), 42,	vi) 24, (), (), 42,

(2) The terms in two positions of some arithmetic sequences are given below.Write the first five terms of each:

i)	3rd term 34	ii)	3 rd term 43	iii)	3^{rd} term 2
	6th term 67		6th term 76		5 th term 3
iv)	4th term 2	v)	2 nd term 5		
	7 th term 3		5 th term 2		

- (3) The 5th term of an arithmetic sequence is 38 and the 9th term is 66. What is its 25th term?
- (4) Is 101 a term of the arithmetic sequence 13, 24, 35, ...? What about 1001?
- (5) How many three-digit numbers are there, which leave a remainder 3 on division by 7?

SARATH A S, GHS ANCHACHAVADI, MALAPPURAM