Online Class - X - 06
29 / 06 / 2021

1. Arithmetic Sequence - Class 4

To view class

Position and term

Activity 1
Can you make an arithmetic sequence with 30 and 50 as the first and second terms?
Ans) First term (x_{1}) = 30 , Second term (x_{2}) = 50
Common difference $(\mathbf{d})=$ Second term - First term

$$
\begin{aligned}
& =50-30 \\
& =20
\end{aligned}
$$

Third term $=$ Second term + Common difference $=50+20=70$
\therefore Arithmetic sequence is $\mathbf{3 0}, 50,70, \ldots$.

Note:

Second term =First term + Common difference
Third term $\quad=$ First term $+2 \times$ Common difference
$x_{2}=x_{3}=x_{1}+2 d$
Fourth term $=$ First term $+3 \times$ Common difference
$x_{4}=x_{1}+3 d$
Fifth term
=First term $+4 \times$ Common difference
Sixth term
$x_{5}=x_{1}+4 d$
\vdots

Activity 2

Can you make an arithmetic sequence with 30 and 50 as the first and third terms?
Ans) 30, .----- , 50
First term $=30$, Third term $=50$
Third term $=$ First term $+2 \times$ Common difference
Third term - First term $=2 \times$ Common difference

Cecilia Joseph, St. John De Britto's A . I. H. S, Fortkochi

$$
\begin{aligned}
50-30 & =2 \times d \\
20 & =2 \times d \\
d & =\frac{20}{2} \\
& =10
\end{aligned}
$$

\therefore Arithmetic sequence is 30, 40, 50, 60,

Activity 3

Can you make an arithmetic sequence with 30 and 50 as the third and seventh terms?
Ans) $-\cdots,-\cdots, 30, \cdots, \cdots, \cdots,-\cdots$,
Seventh term $=$ Third term $+4 \times$ common difference
Seventh term - Third term $=4 \times$ common difference

$$
\begin{aligned}
50-30 & =4 \times d \\
20 & =4 \times d \\
d & =\frac{20}{4}=5
\end{aligned}
$$

First term $=$ Third term $-2 \times$ common difference

$$
\begin{aligned}
& =30-2 \times 5 \\
& =30-10 \\
& =20
\end{aligned}
$$

\therefore Arithmetic sequence is $20,25,30,35,40,45,50, \ldots \ldots$

Activity 4

Can you make an arithmetic sequence with 30 and 70 as the $10^{\text {th }}$ and $20^{\text {th }}$ terms?
Ans)

$$
\begin{aligned}
& \mathbf{2 0}^{\text {th }} \text { term }=10^{\text {th }} \text { term }+\mathbf{1 0} \times \text { common difference } \\
& 2 \mathbf{2 0}^{\text {th }} \text { term - } \mathbf{1 0}^{\text {th }} \text { term }=\underset{(20-10)}{10} \times \text { common difference }
\end{aligned}
$$

Term difference $=$ Position difference \times common difference

$$
\begin{aligned}
70-30 & =10 \times d \\
40 & =10 \times d \\
d & =\frac{40}{10}=4
\end{aligned}
$$

First term $=10^{\text {th }}$ term $-9 \times$ common difference

$$
=30-9 \times 4=30-36=-6
$$

\therefore Arithmetic sequence is $-\mathbf{- 6 , - 2 , 2 , 6 , 1 0 , \ldots \ldots \ldots}$

Observations

The difference between any two terms of an arithmetic sequence is the product of the difference of positions and the common difference

We can put it like this also:

In an arithmetic sequence, term difference is proportional to position difference; and the constant of proportionality is the common difference.

In any arithmetic sequence,

$$
\text { Common difference }=\frac{\text { Term difference }}{\text { Position difference }}
$$

Term difference $\boldsymbol{=}$ Position difference \mathbf{x} Common difference

Term difference is a multiple of common difference

Cecilia Joseph, St. John De Britto's A . I. H. S, Fortkochi

To check whether a given number is a term of a given arithmetic sequence. Activity 5 Is 100 a term of the arithmetic sequence $4,7,10, \ldots$? Give reasons.
Ans) Common difference $=7-4=3$
Term difference $=100-4=96$

$$
\begin{gathered}
\frac{96}{3}=32 \\
96=32 \times 3
\end{gathered}
$$

Since 96 is a multiple of common difference 3,100 is a term of this sequence.

Note:

When $4 \div 3$, remainder $=1$
When $7 \div 3$, remainder $=1$
When $10 \div 3$, remainder $=1$
$\stackrel{1}{1}$
When $100 \div 3$, remainder $=1$

Here we can see that when the terms are divided by common difference remainder is the same.
So we can say, 100 is a term of this sequence.

Abstract

Considering an arithmetic sequence with terms and common difference as natural numbers, the terms of this sequence leave same remainder when they are divided by its common difference

Cecilia Joseph, St. John De Britto's A . I. H. S, Fortkochi

Assignment

T.B Page 21

(1) In each of the arithmetic sequences below, some terms are missing and their positions are marked with \bigcirc. Find them.
i) $24,42, \bigcirc, \bigcirc, \ldots$
ii) $\bigcirc, 24,42, \bigcirc, \ldots$
iii) $\bigcirc, \bigcirc, 24,42, \ldots$
iv) $24, \bigcirc, 42, \bigcirc, \ldots$
v) $\bigcirc, 24, \bigcirc, 42, \ldots$
vi) $24, \bigcirc, \bigcirc, 42, \ldots$
(2) Theterms in two positions of some arithmetic sequences are given below. Write the first five terms of each:
i) $3^{\text {rd }}$ term 34
ii) $3^{\text {rd }}$ term 43
iii) $3^{\text {rd }}$ term 2
$6^{\text {th }}$ term 67
$6^{\text {th }}$ term 76 $5^{\text {dh }}$ term 3
iv) $4^{\text {th }}$ term 2
$7^{\text {th }}$ term 3
v) $2^{\text {nd }}$ term 5
$5^{\text {di }}$ term 2
(3) The $5^{\text {th }}$ term of an arithmetic sequence is 38 and the $9^{\text {th }}$ term is 66 . What is its $25^{\text {th }}$ term?
(4) Is 101 a term of the arithmetic sequence $13,24,35, \ldots$? What about 1001 ?
(5) How many three-digit numbers are there, which leave a remainder 3 on division by 7 ?

