Co-ordinate Geometry

1] The distance between the points $p\left(x_{1}, y_{1}\right)$ and $q\left(x_{2}, y_{2}\right)$ given by :
A] $\sqrt{\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}}$
B] $\sqrt{\left(x_{1}+x_{2}\right)^{2}-\left(y_{1}+y_{2}\right)^{2}}$
C] $\sqrt{\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}+y_{2}\right)^{2}}$
D] $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

2] The coordinates of origin are:
A] (1, 1)
B] (2, 2)
C] $(0,0)$
D] (3, 3)

3] The distance between the co-ordinates of points (p,q) from the origin:
A] $p^{2}-q^{2}$
B] $\sqrt{p^{2}-q^{2}}$
C] $\left.\sqrt{p^{2}+q^{2}} \mathrm{D}\right] q^{2}-p^{2}$

4] The distance between origin and a point (0,4) is:
A] 2
B] 4
C] 8
D] 16

5] The distance between the points $(2,3)$ and $(6,6)$ is:
A] 5 units
B] 7 units
C] 3 units
D] 4 units
$6]$ The distance between the origin and the point $(12,-5)$ is:
A] -5 units
B] 12 units
C] 7 units
D] 13 units

7] The distance of the point $(-4,-7)$ from the y-axis is:
A] 4 units
B] 7 units
C] 11 units
D] $\sqrt{65}$ units

8] If the points $(k, 2 k),(3 k, 3 k)$ and $(3,1)$ are collinear, then k.
A] $-\frac{1}{3}$
B] $\frac{1}{3}$
C] $-\frac{2}{3}$
D] $\frac{2}{3}$

9] If x is a positive integer such that the distance between points $P(x, 2)$ and $Q(3,-6)$ is 10 units, then $\mathrm{x}=$
A] -3
B] 3
C] 9
D] 0

10] If $A(2,2), B(-4,4)$ and $C(5,-8)$ are the vertices of a triangle, then the length of the median through vertex
A] $3 \sqrt{5}$
B] $3 \sqrt{17}$
C] $\sqrt{157}$
D] $\sqrt{213}$

11] If points $(a, 0),(0, b)$ and $(1,1)$ are collinear, then $\frac{1}{a}+\frac{1}{b}=$
A] -1
B] 1
C] 0
D] 2

12] The area of the triangle formed by $(a, b+c),(b, c+a)$ and $(c, a+b)$ so
A] 0
B] abc
C] $(a+b+c)^{2}$
D] none of these

13] A circle drawn with origin as the centre passes through $\left(\frac{13}{2}, 0\right)$. The point which does not lie in the interior 0
A] $\left(\frac{-3}{4}, 1\right)$
B] $\left(2, \frac{7}{3}\right)$
C] $\left(5, \frac{1}{2}\right)$
D] $(-6,3)$

14] A line intersects the y-axis and x-axis at the points P and Q, respectively. If $(2,-5)$ is the midpoint of PQ. The co ordinates P and Q are, respectively.
A] $(0,-5)$ and $(2,0)$
B] $(0,10)$ and $(-4,0)$
C] $(0,4)$ and $(-10,0)$
D] $(0,-10)$ and $(4,0)$

15] If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then the value of p is
A] 4 only
B] ± 4
C] - 4 only
D] 0

16] If the points $A(1,2), O(0,0)$ and $C(a, b)$ are collinear, then
A] $\mathrm{a}=\mathrm{b}$
$B] a=2 b$
C] $2 \mathrm{a}=\mathrm{b}$
D] $a=-b$

17] The distance of the point $P(2,3)$ from the x-axis is
A] 2
B] 3
C] 1
D] 5

18] The distance between the points $A(0,6)$ and $B(0,-2)$ is
A] 6
B] 8
C] 4
D] 2

19] The distance of the point $P(-6,8)$ from the origin is
A] 8
B] $2 \sqrt{7}$
C] 10
D] 6

20] The distance between the points $(0,5)$ and $(-5,0)$ is
A] 5
B] $5 \sqrt{2}$
C] $2 \sqrt{5}$
D] 10

21] The points $(-4,0),(4,0),(0,3)$ are the vertices of a
A] right triangle
$B]$ isosceles triangle C] equilateral triangle
D] Scalene triangle

22] The point which divides the line segment joining the points $(7,-6)$ and $(3,4)$ in ratio $1: 2$ internally lies in
A] I quadrant
B] II quadrant
C] III quadrant
D] IV quadrant

23] The point which lies on the perpendicular bisector of the line segment joining the points $A(-2,-5)$ and $B(2,5)$ is
A] $(0,0)$
B] (0,2)
C] $(2,0)$
D] $(-2,0)$

24] The fourth vertex D of a parallelogram $A B C D$ whose three vertices are $A(-2,3), B(6,7)$ and $C(8,3)$ is
A] $(0,1)$
B] $(0,-1)$
C] ($-1,0$)
D] $(1,0)$

25] If the point $P(2,1)$ lies on the line segment joining points $A(4,2)$ and $B(8,4)$, then
A] $A P=\frac{1}{3} A B$
B] $A P=P B$
C] $P B=\frac{1}{3} A B$
D] $A P=\frac{1}{2} A B$

26] If $\mathrm{P}\left(\frac{a}{3}, 4\right)$ is the mid-point of the line segment joining the points $\mathrm{Q}(-6,5)$ and $\mathrm{R}(-2,3)$, then the value of a is
A] - 4
B] -12
C] 12
D] -6

27] The perpendicular bisector of the line segment joining the point $A(1,5)$ and $B(4,6)$ cuts the y-axis at
A] $(0,13)$
B] $(0,-13)$
C] $(0,12)$
D] $(13,0)$

28] The co ordinates of the point which is equidistant from the three vertices of the $\triangle A O B$ as shown in the Fig Q 21 is
A] (x, y)
B] (y, x)
C] $\left(\frac{x}{2}, \frac{y}{2}\right)$
D] $\left(\frac{y}{2}, \frac{x}{2}\right)$

29] $A O B C$ is rectangle whose three vertices are $A(0,3),(0,0)$ and $B(5,0)$. The length of its diagonal is
A] 5
B] 3
C] $\sqrt{34}$
D] 4

30] The perimeter of a triangle with vertices $(0,4),(0,0)$ and $(3,0)$ is
A] 5
B] 12
C] 11
D] $7+\sqrt{5}$

31] The area of a triangle with vertices $A(3,0), B(7,0)$ and $C(8,4)$ is
A] 14
B] 28
C] 8
D] 6

32] The distance of the point $(4,7)$ from the y-axis is
A] 4
B] 7
C] 11
D] $\sqrt{65}$

33] If points $A(5, P), B(1,5), C(2,1)$ and $D(6,2)$ form a square $A B C D$, then $P=$
A] 7
B] 3
C] 6
D] 8

34] The ratio in which $(4,5)$ divides the join of $(2,3)$ and $(7,8)$ is
A] $7: 2$
B] $-8: 3$
C] $3: 2$
D] 2 : 3

35] If the point $p(x, y)$ is equidistant from $A(5,1)$ and $B(-1,5)$, then
A] $5 \mathrm{x}=\mathrm{y}$
B] $x=5 y$
C] $3 x=-2 y$
D] $3 x=2 y$

36] If the distance b / w the points. $(a \cos \theta+b \sin \theta, 0)$ and $(0, a \sin \theta-b \cos \theta)$ is
A] $a^{2}+b^{2}$
B] $a+b$
C] $a^{2}-b^{2}$
D] $\sqrt{a^{2}+b^{2}}$

37] The perimeter of the triangle formed by the points. $(0,0),(1,0)$ and $(0,1)$ is
A] $1 \pm \sqrt{2}$
B] $\sqrt{2}+1$
C] 3
D] $2+\sqrt{2}$

38] The point on the x-axis which is equidistant from points. $(-1,0)$ and $(5,0)$ is
A] (0, 2)
B] (2,0)
C] $(3,0)$
D] $(0,3)$

39] The coordinates of a point on x-axis which lies on the perpendicular bisector of the line segment joining the points $(7,6)$ and $(-3,4)$ are
A] (0, 2)
B] $(3,0)$
C] $(0,3)$
D] $(2,0)$

40] The coordinates of the centroid of a triangle whose vertices are $(0,6),(8,12)$ and $(8,0)$ is
a) $(4,6)$
b) $(16,6)$
c) $(8,6)$
d) $(16 / 3,6)$

