

QUADRATIC EQUATIONS

1] The solutions for the equations $x + y = 10$ and $x - y = 2$ are							
	A] x = 6		B] x = 4		C] x = 7	D] x = 9	
	y = 4		y = 6		y = 3	y = 2	
2] One root of the equation $x^2 - 5x + k = 0$ is 2. Then k is:							
	A] -6	B] 6	C] -5		D] 5		
3] If the discriminant of quadratic equation $b^2 - 4ac = 0$ then the roots are:							
	A] Real and c	distinct	t	B] Ro	ots are equal		
	C] No real ro	ots		D] Ro	ots are uneq	ual and irrational	
4] The rc	ots of the qua	adratic	equation x ²	² – 5x –	- 6 = 0 are:		
	A] – 3 and – 2	2	B] 3 and 2		C] 6 and – 1	D] -6 and 1	
			_	.	_		
5] The rc	ots of the qua	adratic	equation ax	x² + bx	= 0 are:		
	A] 0, $-\frac{b}{a}$		B] 0, $+\frac{b}{a}$		D] + $\frac{b}{a}$, - $\frac{b}{a}$	D] - $\frac{b}{a}$, - $\frac{b}{a}$	
6] If 4x =	$\frac{81}{2}$, then the	value d	of x is:				
	x Al-4.5		B] +4.5		C] 4.5	D] +0.45	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0] - 1.0		0] 1.0	0] -0.10	
7] In the equation $ax^2 + bx + c = 0$ if one root is negative of the other then							
	A] a = 0		B] b = 0		C] c = 0	D] a = c	
					-		
8] If one of the roots of the equation $x^2 - 5x = 0$ is zero, then the other root is:							
-	A] 0	B] -5	C] 5		D] ± 5		
9] If 4a = $\frac{36}{-1}$, the value of a is							
-	a Al + 9		B] + 3	C] +3	ג- נט		
	· ·] — 9		-1 - 0	5.0	51 5		
		-l+:-		2 21.			

10] The roots of a quadratic equation $2k^2 - 2k - 5 = 0$, when the values of the coefficient a, b and c are being substituted in the formula are:

A] k =
$$\frac{-(-2)\pm\sqrt{(-2)^2-4(2)(5)}}{2}$$

B] k = $\frac{-2\pm\sqrt{(-2)^2-4(2)(-5)}}{2(2)}$
C] k = $\frac{-(-2)\pm\sqrt{(-2)^2-4(2)(-5)}}{2(2)}$
d] k = $\frac{2\pm\sqrt{(2)^2-4(2)(5)}}{2(2)}$

Radhika Polina

11] The graph of $y = x^2$ and y = 2 - x intersects at (1,1) and (-2,4), then the roots of required quadratic equation are:

12] If
$$a^2 = b^2 + c^2$$
, then c is given by:
A] $\pm \sqrt{b^2 + a^2}$ B] $\pm \sqrt{a^2 + b^2}$ C] $\pm \sqrt{a - b}$ D] $\pm \sqrt{a^2 - b^2}$

13] One of the positive roots of the equation (2x - 7)(3x - 5) = 0 is: A] $\frac{7}{2}$ B] $\frac{2}{7}$ C] $\frac{3}{5}$ D] $\frac{5}{7}$

14] Value of x in the equation $px^2 + qx + r = 0$ is:

A] $\frac{-p\pm\sqrt{p^2-4pq}}{2p}$	$B] \frac{-q \pm \sqrt{q^2 - 4pr}}{2p}$	C] $\frac{-q \pm \sqrt{r^2 - 4pq}}{2r}$	D] $\frac{-q\pm\sqrt{p^2-4pq}}{2q}$
15] The roots of the qua A] +2, -1 C] +2, +1	adratic equation solved B] -2, +1 D] -2, -1	in the graph are:	-5 -4 -3 -2 -1 -2 -3 -4 -5 -4 -3 -2 -3 -4 -5 -4 -3 -2 -3 -4 -5 -4 -3 -2 -3 -4 -5 -2 -3 -3 -2 -3 -3 -2 -3 -3 -2 -3 -3 -2 -3 -2 -3 -3 -2 -2 -3 -2 -3 -2 -2 -3 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -2 -3 -2 -3 -2 -2 -3 -2 -2 -2 -3 -2 -2 -2 -2 -3 -2 -2 -2 -2 -2 -3 -2 -2 -2 -2 -2 -3 -2 -2 -2 -3 -2 -2 -2 -3 -2 -2 -2 -3 -2 -2 -2 -3 -2 -2 -2 -2 -3 -2 -2 -2 -3 -2 -2 -2 -2 -3 -2 -2 -2 -2 -3 -2 -2 -2 -2 -2 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

16] The sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is:

A]
$$\frac{c}{a}$$
 B] $\frac{b}{a}$ C] $-\frac{b}{a}$ D] $\frac{a}{c}$

17] The product of two consecutive natural numbers is 12. The form of this statement is: A] $x^2 + 2x - 12 = 0$ B] $x^2 + x - 12 = 0$ C] $x^2 + x + 12 = 0$ D] $x^2 + 2x + 12 = 0$

18] The pure quadratic equation in the following is:

A]
$$x + \frac{1}{x} = 4$$
 B] $x + \frac{1}{x} = 0$ C] $x - \frac{3}{4} = 2x$ D] $3x (x - 1) = 0$

19] The quadratic equation having the roots ($1 + \sqrt{2}$) and ($1 - \sqrt{2}$) is :A] $x^2 + 2x + 1 = 0$ B] $x^2 + 2x - 1 = 0$ C] $x^2 - 2x - 1 = 0$ D] $x^2 - 2x + 1 = 0$

20] x + $\frac{1}{x}$ = 3 is in the form of:

A] Adfected quadratic equation	B] Pure quadratic equation
C] Linear equation	D] Simple equation

21] Which one of the following in not a pure quadratic equation?

A] $x^2 + 2 = 6$ B] $2m^2 = 72$ C] $p^2 = 9$ D] $K^2 = K$

22] If a and b are the roots of the equation $x^2 - 5x + 7 = 0$, then the value of ab(a + b)is: D] 49 A] 5 B] 25 C] 35 23] The sum of a number and twice its square is 78. The correct from of its equation is: A] $x + 2x^2 = 78$ B] $x + (2x)^2 = 78$ C] x + 2x = 78 D] $x^2 + (2x)^2 = 78$ 24] The sum of the roots of the quadratic equation $2x^2 = 6x - 5$ is: C] $\frac{-5}{2}$ D] 3 A] $\frac{1}{3}$ B] $\frac{5}{2}$ 25] The quadratic equation whose roots are 1 and -1 is: Al $ax^2 - x - 1 = 0$ Bl $ax^2 - 1 = 0$ C] $x^2 = 1$ D] $x^2 + 1 = 0$ 26] In a quadratic equation $ax^2 + bx + c = 0$, if a = 0, then it becomes: A] Pure quadratic equation B] Adfected quadratic equation

27] The sum of a number and its square is 42. It represents the equation:

C] Simple linear equation

A] $x^{2} + x + 42 = 0$ B] $x^{2} + x - 42 = 0$ C] $2x^{2} + x - 42 = 0$ D] $x^{2} - x - 42 = 0$

D] Second degree equation

28] When $2m^2 = 2 - m$ is written in the standard form, then quadratic equation becomes: A] $2m^2 + m - 2 = 0$ B] $2m^2 - m - 2 = 0$ C] $2m^2 - m + 2 = 0$ D] $2m^2 + m + 2 = 0$

29] If m and n are roots of a quadratic equation, then the standard form of quadratic equation is:

A] $x^{2} + (m + n)x + mn = 0$ C] $x^{2} + (m - n)x + mn = 0$ D] $x^{2} - (m + n)x - mn = 0$

30] If m and n are roots of equation $2x^2 - 6x + 1 = 0$, then the value of $m^2n + mn^2$ is: A] $\frac{3}{2}$ B] $\frac{2}{3}$ C] $-\frac{3}{2}$ D] $\frac{1}{2}$

31] Sum of a number and its reciprocal is $5\frac{1}{5}$. Then the required equation is:

A] $y^2 + \frac{1}{y} = \frac{26}{5}$ C] $y^2 + \frac{1}{y} + \frac{26}{5} = 0$ B] $5y^2 - 26y + 5 = 0$ D] $5y^2 + 26y + 5 = 0$ Home

32] In the equation $ax^2 + bx + c = 0$, if b = 0, then the equation is:

A] Adfected quadratic equation B] Pure quadratic equation

C] Linear equation D] Sim

D] Simultaneous equation

33] The length of a rectangle is 4cm more than the breadth. The area is 60 sq.cm. This can be represented as:

A] x + (x+4) = 60 B] x+(x+4) - 60 = 0 C] (x+4)x + 60 = 0 D] (x+4)x - 60 = 0

34] If the sum of the roots of a quadratic equation is -5 and the product is 4, then the equation is:

A]
$$x^{2} + 5x + 4 = 0$$
 B] $x^{5} - 5x + 4 = 0$ C] $x^{2} + x + 20 = 0$ D] $x^{2} - x - 20 = 0$

35] The product of the roots of the equation $x^2 + 5x + (k + 4) = 0$ is zero, then k is equal to A] -5 B] -4 C] 4 D] 5

36] The quadratic equation among the following is:

A] $a^3 + 3 = 2a$ B] x + 5 = 10 C] x + 4(x+1) = 0 D] $y = \frac{2}{y}$

37] The sum and product of the roots of the quadratic equation $4x^2 + 1 = 0$ are respectively.

A] 1 and 4 B] 0 and 1 C] 0 and $-\frac{1}{4}$ D] 0 and $\frac{1}{4}$

38] The hypotenuse of a right angled triangle is 13cm. if one side of the remaining is 5 cm greater that the Other, they can be related with each other as:

A] x + (x + 5) = 13	B] $x^2 + (x^2 + 5) = 13^2$
C] $x^2 + (x + 5)^2 = 13^2$	D] $x^2 + (x - 5)^2 = 13^2$

39] If the roots of a quadratic equation are 0 and $-\frac{1}{2}$, the equation is : A] $2x^2 + x = 0$ B] $x^2 + \frac{1}{2}$ C] $2x^2 + 1 = 0$ D] $2x^2 - x = 0$

40] Twice the square of a number added to three times the number is equal to 65. This statement in the form of equation is:

A] $3x^2 + 2x = 65$ B] $2x^2 + 3x = 65$ C] $2x^2 + 3x^2 = 54$ D] $3x^2 + 2x^2 + 65$

41] The roots of an equation are +2 and -2, then the equation is a / an:

- A] Adfected quadratic equation B] Linear equation
- C] Simple linear equation D] Pure quadratic equation

42] The height of triangle is 4 cm more than the base. Its area is 30 sq cm. this relation can be represented as:

A]
$$x(x+4) = 30$$
 B] $2x(x+4) = 40$ C] $x(x+4) = 15$ D] $x(x+4) = 60$

43] If an equation has only one root, then the equation is:

A] Quadratic equationB] Linear equationC] Cubic equationD] Simultaneous equation

44] If m and n are the roots of the equation $x^2 - 6x + 2 = 0$, then the value of $\frac{1}{m} + \frac{1}{n}$ is A] 6 B] 1.5 C] 3 D] 2

45] The quadratic equation whose roots are $(3 \pm \sqrt{5})$ is: A] $x^2 - 6x + 4 = 0$ B] $x^2 - 3x + 5 = 0$ C] $x^2 + 3x - 5 = 0$ D] $x^2 + 6x + 4 = 0$

46] The sum and product of the roots of the equation $2x^2 = 3x$, respectively are: A] $\frac{3}{2}$ and 0 B] 0 and $\frac{3}{2}$ C] + $\frac{15}{2}$ and 0 D]0 and - $\frac{15}{2}$

47] If the product of the roots of the equation $x^2 + 3x + q = 0$ then q is equal to:

A] 1 B] 2 C] 3 D] 0

48] Parabola is a curve obtained from:

A] Linear equation B] Cubic equation C] Quadratic equation D] Simultaneous equation

49] If m and n are the roots of the quadratic equation $x^2 - 6x + 2 = 0$, then the value of $(m+n)^2$ is: A] 36 B] - 36 C] 2 D] -2

50] If $ax^2 + bx + c = 0$ has equal roots. Then c is equal to:

51] The value of p for the equation $x^2 - px + 9 = 0$ to have equal roots is: A] +6 B] ± 6 C] -6 D] ± 13

52] The value of the discriminant of the equation $4x^2 - 4x + 1 = 0$ is: A] - 8 B] - 12 C] 32 D] 0

53] The nature of the roots of the equation $ax^2 + bx + c = 0$ is decided by : A] $b^2 - 4ac$ B] b2 + 4ac C] b - 4ac D] b + 4ac

54] The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is : B] b² - 4ac C] $\frac{c}{a}$ D] $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ A] - $\frac{b}{c}$ 55] If the roots of the quadratic equation $x^2 + 4x + c = 0$ is equal, then the value of c is: B]4 C] 5 A] 3 D] 12 56] If the roots of the quadratic equation $mx^2 + 6x + 1 = 0$ are equal, then the value of m is: B]1 C] 9 A] 6 D] 5 57] In a quadratic equation, if the value of $b^2 - 4ac = -7$, the nature of the roots of the quadratic equation is: A] Real and equal B] Real and distinct C] Imaginary D] Negative numbers 58] If the roots of equation $x^2 - mx + 16 = 0$ are equal, then the value of m is: A] ± 4 B]]±16 $C]] \pm 2$ D]]±8 59] Roots of the equation $x^2 - 2x + 1 = 0$ are: A] Not real B] Distinct C] Equal D] Zero 60] Value of discriminant factor in the equation $2x^2 = 5x$ is: A] 27 B] 25 C] 23 D] 10 61] The nature of the roots of the equation $x^2 - 6x + 9 = 0$ is: A] Real and rational B] Real and irrational C] Equal D] Complex 62] If the roots of quadratic equation are real and distinct, then which of the following is

correct?

A] $\Delta > 0$ B] $\Delta < 0$ C] $\Delta = 0$ D] $\Delta \le 0$

