KITE VICTERS ONLINE CLASS 28-06-2021

PHYSICS - X-PART-5 CLASS 05

Heating effect of electric current

* If heat energy generated in a current carrying conductor is $H = I^2Rt$, Complete the following table

Resistance of the conductor R	Current intensity I	Time of flow of current t	Heat generated H
10	(a)	5	50 J
5	2	(b)	200 J
(C)	0.5	2.5	12.5 J
2.5	4	5	(d)

```
a) I = ?
  H = I^2 Rt
  I^2 = H / Rt = 50 / (10 \times 5) = 50 / 50 = 1
   I = 1 A
b) t = ?
  H = I^2 Rt
  t = H / I^2 R = 200 / (2^2 x 5) = 200 / 20 = 10
   t = 10 s
c) R = ?
   H = I^2 Rt
  R = H / I^{2}t = 12.5 / (0.5^{2} \times 2.5) = 12.5 / 0.625 = 20
  R = 20 \Omega
c) H = ?
   H = I^2 Rt
  R = 4^2 x 2.5 x 5 = 200
  R = 200 J
```

KITE VICTERS ONLINE CLASS 28-06-2021

2. If 3 A current flows through an electric iron which is designed to work at 230 V for 10 s, calculate heat energy generated using the following equations.

- a) $H = I^2 Rt$
- b) $H = (V^2/R)t$
- c) H = VIt. Compare your answer
- a) $H = I^2 Rt$ R = V / I = 230 / 3 $H = 3^2 x (230/3) x 10 = 6900 J$
- b) $H = (V^2/R)t$ $H = \{230^2/(230/3)\} \times 10$ $H = 230 \times 10 \times 3 = 6900 \text{ J}$
- c) H = VIt $H = 230 \times 3 \times 10 = 6900 \text{ J}$

<u>Assignment</u>

V = 230 V, I = 3 A, t = 10 s

Let's solve some mathematical problems which are related to Joules Law.

1. How much will be the heat developed if 0.2 A current flows through a conductor of resistance 200 Ω for 5 minute?

2. Let's find out the heat developed in 3 minute by a device of resistance 920 Ω working under 230 V.

3. Let's calculate the heat developed when 3 A current flows through an electric iron box designed to work under 230 V for half an hour?