1. Arithmetic Sequence - Class 2

Alsebra of sequences

- Consider sequence of counting numbers $\mathbf{1 , 2 , 3 , 4 , 5}$.

The numbers forming a sequence are called its_terms

Here
$1^{\text {st }}$ term $=1,2^{\text {nd }}$ term=2, $3^{\text {rd }}$ term $=3,4^{\text {th }}$ term $=4$ \qquad
$10^{\text {th }}$ term $=10, \ldots n^{\text {th }}$ term $=n$

The terms in a sequence are written in algebra as

$$
\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}
$$

$\therefore \mathrm{x}_{1}=1$
$\mathrm{x}_{2}=2$
$\mathrm{x}_{3}=3$
$\mathrm{x}_{4}=4$,
$\mathrm{x}_{10}=10$
$\mathbf{x}_{\mathrm{n}}=\mathbf{n}$

Algebraic form

$n^{\text {th }}$ term of a sequence is the general term and hence it is called the alsebraic form of the sequence

Algebraic form of sequence of counting numbers is \mathbf{n}

Cecilia Joseph, St. John De Britto's A . I. H. S, Fortkochi

- Consider sequence of even numbers

$$
2,4,6,8,10,12
$$

\qquad
Here
This can be written as

$1^{\text {st }}$ term	$\left(x_{1}\right)=2$	$2=2 \times 1$
$2^{\text {nd }}$ term	$\left(\mathrm{x}_{2}\right)=4$	$4=2 \times 2$
$8^{\text {rd }}$ term	$\left(x_{3}\right)=6$	$6=2 \times 3$
$4^{\text {th }}$ term	$\left(\mathrm{x}_{4}\right)=8$	$8=2 \times 4$
$5^{\text {th }} \text { term }$	$\left(\mathrm{x}_{5}\right)=10$	$10=2 \times 5$
$\dot{10}^{10^{\text {th }}} \text { term }$	$\left(\mathrm{x}_{10}\right)=20$	$20=2 \times 10$
\vdots		$\mathrm{x}_{20}=2 \times 2$
$5^{\text {cha }}$ therm (x_{50})		$\mathrm{x}_{50}=2 \times 5$
$\mathrm{n}^{\text {th }}$ term		$\mathrm{x}_{\mathrm{n}}=2 \times \mathrm{n}$

Algebraic form of sequence of even numbers is $2 n$

- Consider sequence of perfect squares

$$
1,4,9,16,25,36
$$

Here

$$
\begin{gathered}
\mathbf{x}_{1}=\mathbf{1}=1^{2} \\
\mathbf{x}_{2}=\mathbf{4}=2^{2} \\
\mathbf{x}_{3}=\mathbf{9}=\mathbb{3}^{2} \\
\mathbf{x}_{4}=\mathbf{1 6}=4^{2} \\
\vdots \\
\vdots \\
\mathbf{x}_{20}=20^{2}=\mathbf{4 0 0} \\
\vdots
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{x}_{50}=50^{2}=\mathbf{2 5 0 0} \\
& \vdots \vdots \\
& \mathbf{x}_{\mathrm{n}}=\mathrm{n}^{2}
\end{aligned}
$$

Algebraic form of sequence of perfect squares is $\mathbf{n}^{\mathbf{2}}$

- Consider sequence of reciprocals of counting numbers

Counting numbers : 1, 2, 3, 4, 5 \qquad

Reciprocals
$: \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$
$\mathrm{x}_{1}=\frac{1}{1}=1$
$\mathrm{x}_{2}=\frac{1}{2}$
$\mathrm{x}_{3}=\frac{1}{3}$
$\mathbf{x}_{4}=\frac{1}{4}$
\vdots
\vdots
$\mathrm{x}_{12}=\frac{1}{12}$
\vdots
$\mathbf{x}_{\mathrm{n}}=\frac{1}{\mathrm{n}}$

Algebraic form of sequence of reciprocal of counting numbers is $\frac{1}{n}$

Arithmetic Sequence

- Consider sequence of triangles made with dots


```
x}=\mathrm{ Number of dots in }\mp@subsup{5}{}{\mathrm{ th }}\mathrm{ triangle = 1 + 2+3+4+5
!
```



```
!
x
```

-Consider sequence of sum of interior angles of regula polygons

1. Triangle

$$
\begin{aligned}
& 1 \text { Triangle } \\
& \text { Sum of interior angles }=180^{\circ} \times 1 \\
& \mathbf{x}_{1}=180^{\circ} \times 1
\end{aligned}
$$

2. Square

2 Triangles

Sum of interior angles $=180^{\circ} \times 2$

$$
x_{2}=180^{\circ} \times 2
$$

3. Pentagon

3 Triangles

Sum of interior angles $=180^{\circ} \times 3$

$$
x_{3}=180^{\circ} \times 3
$$

4. Hexagon

4 Triangles
Sum of interior angles $=180^{\circ} \times 4$

$$
x_{4}=180^{0} \times 4
$$

Algebraic form of sum of interior angles of polygon is

$$
180^{\circ} \times \mathrm{n}
$$

Discussion: Is it possible to write algebraic form of every sequence?

Consider sequence of prime numbers 2, 3, 5, 7, 11, 13, 17, 19, 23,
Here we cannot write a general term.
There is no algebraic form exists for the
Prime numbers are the numbers that have only two factors, 1 and the number itself. sequence of prime numbers
So some sequences have no algebraic form.

Cecilia Joseph, St. John De Britto's A . I. H. S, Fortkochi

Assignment

T.B Page 18

(1) Write the algebraic expression for each of the sequences below:
a) Sequence of odd numbers
b) Sequence of natural numbers which leave remainder 1 on division by 3.
c) The sequence of natural numbers ending in 1.
d) The sequence of natural numbers ending in 1 or 6.
(2) For the sequence of regular polygons starting with an equilateral triangle, write the algebraic expressions for
a) the sequence of the sums of inner angles
b) the sums of the outer angles
c) the measures of an inner angle
d) the measures of an outer angle.
(3) Look at these pictures:

The first picture is got by removing the small triangle formed by joining the midpoints of an equilateral triangle. The second picture is got by removing such a middle triangle from each of the red triangles of the first picture. The third picture shows the same thing done on the second.

Cecilia Joseph, St. John De Britto's A . I. H. S, Fortkochi
i) How many red triangles are there in each picture?
ii) Taking the area of the original uncut triangle as 1 , compute the area of a small triangle in each picture.
iii) What is the total area of all the red triangles in each picture?
iv) Write the algebraic expressions for these three sequences obtained by continuing this process.

