ONLINE MATHS CLASS - X - 04 ($24 / 06 / 2021$)

1. ARITHMETIC SEQUENCE - CLASS 2

What we studied in the last class ? .

Number sequences
A set of numbers written as the first , second , third and so on , according to a particular rule is called a Number sequence

Terms of a sequence

The numbers forming a sequence are called its terms

Activity 1

Consider the sequence of natural numbers .

$$
1,2,3,4,5, \ldots
$$

First term	Second term	Third term	Fourth term	Fifth term
1	2	3	4	5

$10^{\text {th }}$ term	$25^{\text {th }}$ term	$50^{\text {th }}$ term	$100^{\text {th }}$ term	n $^{\text {th }}$ term
10	25	50	100	n

That is ,

Position of the term	1	2	3	4	5	\ldots	10	25	50	100	n
Term	1	2	3	4	5	\cdots	10	25	50	100	n

Activity 2
Consider the sequence of even numbers .

$$
2,4,6,8,10, \ldots
$$

First term	Second term	Third term	Fourth term	Fifth term
2	4	6	8	10

$10^{\text {th }}$ term	$25^{\text {th }}$ term	$50^{\text {th }}$ term	$100^{\text {th }}$ term	$n^{\text {th }}$ term
20	50	100	200	$2 n$

That is ,

Position of the term	1	2	3	4	5	\ldots	10	25	50	100	n
Term	2×1	2×2	2×3	2×4	2×5	\ldots	2×10	2×25	2×50	2×100	$2 \times n$

Activity 3

Consider the sequence of perfect squares .
$1,4,9,16,25, \ldots$

First term	Second term	Third term	Fourth term	Fifth term
1	4	9	16	25

$10^{\text {th }}$ term	$21^{\text {th }}$ term	$30^{\text {th }}$ term	$50^{\text {th }}$ term	nth $^{\text {th }}$ term
100	441	900	2500	\mathbf{n}^{2}

That is ,

Position of the term	1	2	3	4	5	\cdots	10	21	30	50	n
Term	1×1	2×2	3×3	4×4	5×5	\ldots	10×10	21×21	30×30	50×50	$n \times n$

Activity 4
Consider the sequence of reciprocal of the natural numbers .

$$
\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots
$$

First term	Second term	Third term	Fourth term	Fifth term
$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$

$10^{\text {th }}$ term	$25^{\text {th }}$ term	${50^{\text {th }} \text { term }}^{\mathbf{1 0 0}^{\text {th }} \text { term }}$	n $^{\text {th }}$ term	
$\frac{1}{10}$	$\frac{1}{25}$	$\frac{1}{50}$	$\frac{1}{100}$	$\frac{1}{n}$

That is ,

Position of the term	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	\cdots	$\mathbf{1 0}$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	\mathbf{n}
Term	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	\cdots	$\frac{1}{10}$	$\frac{1}{25}$	$\frac{1}{50}$	$\frac{1}{100}$	$\frac{1}{n}$

Activity 5

Lets arrange the dots as shown in the figure . This process is going on in order .
Consider the sequence of number of dots in each set .

$$
1,3,6,10,15, \ldots
$$

First term	Second term	Third term	Fourth term	Fifth term
1	$1+2$	$1+2+3$	$1+2+3+4$	$1+2+3+4+5$

$10^{\text {th }}$ term	$25^{\text {th }}$ term	$50^{\text {th }}$ term	$100^{\text {th }}$ term	$n^{\text {th }}$ term
$1+2+3+\ldots+10$	$1+2+3+\ldots+25$	$1+2+3+\ldots+50$	$1+2+3+\ldots+100$	$1+2+3+\ldots+n$

That is ,

Position of the term	1	2	3	4	5
Term	1	$1+2$	$1+2+3$	$1+2+3+4$	$1+2+3+4+5$

10	25	50	100	n
$1+2+3+\ldots+10$	$1+2+3+\ldots+25$	$1+2+3+\ldots+50$	$1+2+3+\ldots+100$	$1+2+3+\ldots+n$

Activity 6

Consider the sequence of regular polygons starting with an equilateral triangle . Consider the sequence of their sums of inner angles .
(By drawing maximum number of diagonals from one vertex of each polygon , we can divide it into triangles. Hence we can find their sum of inner angles .)

$180^{\circ}, 360^{\circ}, 540^{\circ}, 720^{\circ}, \ldots$											
First term		Second term		Third term			Fourth term			Fifth term	
180^{0}		$\mathbf{2 \times 1 8 0}{ }^{0}$		$\mathbf{3 \times 1 8 0}{ }^{\text {0 }}$			$\mathbf{4 \times 1 8 0}{ }^{\text {0 }}$			$5 \times 180{ }^{\circ}$	
(${ }^{\text {a }}$											
$10^{\text {th }}$ term		$25^{\text {th }}$ term		$50^{\text {th }}$ term			$100^{\text {th }}$ term			$\mathrm{n}^{\text {th }}$ term	
10×180^{0}		$\mathbf{2 5 \times 1 8 0}{ }^{\text {0 }}$		50×180^{0}			100×180^{0}			$\mathrm{n} \times 180^{0}$	
That is ,											
Position of the term	1	2	3	4	5	-.	10	25	50	100	n
Term	180^{0}	$360{ }^{0}$	$540{ }^{0}$	$720{ }^{0}$	900 ${ }^{\text {² }}$...	$1800{ }^{\circ}$	$4500{ }^{\circ}$	9000 ${ }^{\circ}$	$18000{ }^{\circ}$	$\begin{gathered} \mathrm{n} \mathbf{x} \\ \mathbf{1 8 0}^{0} \end{gathered}$

Findings

Each term of a sequence is related to its position .
The $n^{\text {th }}$ term of a sequence is its general form .
The $\mathbf{n}^{\text {th }}$ term of a sequence is also called its algebraic form.

Activity	Number sequence	Algebraic form
1	1, 2, 3, 4, 5, ..	n
2	2, 4, 6, 8, 10, ..	2n
3	1,4, 9, 16, $25, \ldots$	n^{2}
4	$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$	$\frac{1}{n}$.
5	1, 3, 6, 10, 15, ..	$1+2+3+\ldots+n$
6	$180^{0}, 360^{0}, 540^{\circ}, 720^{\circ}$,	$\mathrm{n} \times 180^{0}$

Conclusion

Algebraic form of a number sequence is the algebraic expression of the relationship between the term and its position .

More activty .

(1) Write the algebraic expression for each of the sequences below:
i) Sequence of odd numbers
ii) Sequence of natural numbers which leave remainder 1 on division by 3 .
iii) The sequence of natural numbers ending in 1 .
iv) The sequence of natural numbers ending in 1 or 6 .
(2) For the sequence of regular polygons starting with an equilateral triangle, write the algebraic expressions for the sequence of the sums of inner angles, the sums of the outer angles, the measures of an inner angle, and the measures of an outer angle.
(3) Look at these pictures:

The first picture is got by removing the small triangle formed by joining the midpoints of an equilateral triangle. The second picture is got by removing such a middle triangle from each of the red triangles of the first picture. The third picture shows the same thing done on the second.
i) How many red triangles are there in each picture?
ii) Taking the area of the original uncut triangle as 1 , compute the area of a small triangle in each picture.
iii) What is the total area of all the red triangles in each picture?
iv) Write the algebraic expressions for these three sequences

