ONLINE MATHS CLASS - X - 04 (24/06/2021)

1. ARITHMETIC SEQUENCE - CLASS 2

What we studied in the last class ? .

Number sequences

A set of numbers written as the first , second , third and so on , according to a particular

rule is called a Number sequence

Terms of a sequence

The numbers forming a sequence are called its *terms*

Activity 1

Consider the sequence of natural numbers .

1,2,3,4,5,...

First term	l	Secon	d term	Т	Third term			th term	l	Fifth term		
1			2		3			4		5		
10 th term		25 th 1	term		50 th term 100 th term					n th term		
10		2	25		50	50 100				n		
That is ,												
Position of the term	1	2	3	4	5	•••	10	25	50	100	n	
Term	1	2	3	4	4 5			25	50	100	n	
Activity 2		·		*								

Consider the sequence of even numbers .

2,4,6,8,10,...

First term	Second term	Third term	Fourth term	Fifth term
2	4	6	8	10

SARATH A S , GHS ANCHACHAVADI , MALAPPURAM

10 th term		25 th t	erm	5	50 th term 100 th term				n th term		
20		5	0		100			200		2n	
That is ,											
Position of the term	1	2	3	4	5	•••	10	25	50	100	n
Term	2 x 1	2 x 2	2 x 3	2 x 4	2 x 5	•••	2 x 10	2 x 25	2 x 50	2 x 100	2 x n

Activity 3

Consider the sequence of perfect squares .

1,4,9,16,25,...

First term	Second term	Third term	Fourth term	Fifth term	
1	4	9	16	25	

10 th term	21 th term	30 th term	50 th term	n th term	
100	441	900	2500	n ²	

That is,

Position of the term	1	2	3	4	5	•••	10	21	30	50	n
Term	1 x 1	2 x 2	3 x 3	4 x 4	5 x 5	•••	10x 10	21 x 21	30 x 30	50 x 50	n x n

Activity 4

Consider the sequence of reciprocal of the natural numbers .

 $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, ...

First term	Second term	Third term	Fourth term	Fifth term	
$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	

10 th term	25 th term	50 th term	100 th term	n th term	
$\frac{1}{10}$	$\frac{1}{25}$	$\frac{1}{50}$	$\frac{1}{100}$	$\frac{1}{n}$	

That is ,												
Position of the term	1	2	3	4	5	•••	10	D	25	50	100	n
Term	$\frac{1}{1}$	$\frac{1}{2}$	<u>1</u> 3	$\frac{1}{4}$	<u>1</u> 5	<u>.</u>	$\frac{1}{10}$)	<u>1</u> 25	$\frac{1}{50}$	$\frac{1}{100}$	$\frac{1}{n}$
Activity 5												
Lets arrang	e the	dots as	shown	in th	e figu	re. Tl	his p	roce	ss is <mark>go</mark> ir	ıg on i	n order .	
Consider the	e seqı	ience of	numt	oer of	dots i	n each s	set.				•	
		•				•				•	•	
• • • • • • • •												
1,3,6,10,15,												
First terr	n	Second term			Third term			Fo	urth ter	m	Fifth ter	'n
1		1	+ 2		1	+ 2 + 3		1+	2 + 3 + 4	I 1	1 + 2 + 3 + 3	4 +5
10 th tern	1	25 ^t	^h term		50) th term			100 th ter	m	n th ter	m
1+2+3 +	+10	1+2+3	+	+25	1+2+3	3 + +	- 50	1+2	+3 +	+100	1+2+3 + .	+n
That is ,												
Position of the term		1		2	3				4		5	
Term		1	1	+ 2	1	1 + 2 + 3	3	1 +	2 + 3 +	4	1 + 2 + 3 +	4 +5
10			25			50			100		n	
1+2+3 +	+10	1+2+3 -	++	25	1+2+3	3 + +	-50	1+2-	+3 +	+100	1+2+3 + .	+ n
Activity 6												
Consider the sequence of regular polygons starting with an equilateral triangle $\ .$ Consider												
the sequence	e of tl	neir sun	ns of i	nner	angles	.						
(By drawing	g max	imum n	umbe	r of d	iagona	als from	ı one	vert	ex of eac	ch poly	y <mark>gon , we c</mark> a	an
divide it in	to tria	angles .	Hence	e we c	an fin	d their	sum (of in	ner angl	es.)		

SARATH AS, GHS ANCHACHAVADI, MALAPPURAM

 $180^{\circ}, 360^{\circ}, 540^{\circ}, 720^{\circ}, \ldots$

First tern	1	Second	l term	r	Third t	erm	Fo	urth te	rm	Fifth term		
180 °		2 x	180 °		3 x 180°			4 x 180	0	5 x 180°		
10 th term	l	25^{th} t	5 th term 50 th term			1	00 th ter	m	n th term			
10 x 180	0	25 x	180 ⁰		50 x 180°			00 x 18	0 ⁰	n x 180°		
That is ,												
Position of the term	1	2	3	4	5	•••	10	25	50	100	n	
Term	180 ⁰	360 ⁰	540 ⁰	72 0 °	900 ⁰	••••	1800 °	4500 °	9000 ⁰	18000 °	n x	

180°

Findings

 \star Each term of a sequence is related to its position .

 \bigstar The nth term of a sequence is its general form .

★ The nth term of a sequence is also called its *algebraic form*.

Activity	Number sequence	Algebraic form			
1	1,2,3,4,5,	n			
2	2,4,6,8,10,	2n			
3	1,4,9,16,25,	n ²			
4	$\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$,	$\frac{1}{n}$			
5	1,3,6,10,15,	$1 + 2 + 3 + \ldots + n$			
6	180° , 360° , 540° , 720° ,	n x 180°			

SARATH A S , GHS ANCHACHAVADI , MALAPPURAM

<u>Conclusion</u>

Algebraic form of a number sequence is the algebraic expression of the relationship between the term and its position .

<u>More activty</u> .

- (1) Write the algebraic expression for each of the sequences below:
 - i) Sequence of odd numbers
 - Sequence of natural numbers which leave remainder 1 on division by 3.
 - iii) The sequence of natural numbers ending in 1.
 - iv) The sequence of natural numbers ending in 1 or 6.
- (2) For the sequence of regular polygons starting with an equilateral triangle, write the algebraic expressions for the sequence of the sums of inner angles, the sums of the outer angles, the measures of an inner angle, and the measures of an outer angle.
- (3) Look at these pictures:

The first picture is got by removing the small triangle formed by joining the midpoints of an equilateral triangle. The second picture is got by removing such a middle triangle from each of the red triangles of the first picture. The third picture shows the same thing done on the second.

- How many red triangles are there in each picture?
- Taking the area of the original uncut triangle as 1, compute the area of a small triangle in each picture.
- iii) What is the total area of all the red triangles in each picture?
- iv) Write the algebraic expressions for these three sequences

SARATH A S, GHS ANCHACHAVADI, MALAPPURAM