9. SEQUENCES AND SERIES

A Geometric progression (G.P.) is a sequence in which each term except the first is obtained by multiplying the previous term by a non-zero constant called the common ratio. Let us consider a G.P. with first non-zero term a and common ratio r,
i.e., $a, a r, a r^{2}, \ldots, a r^{n-1}, \ldots$

Here, common ratio $\mathrm{r}=\frac{a r^{n-1}}{a r^{n-2}}$
The general term or \boldsymbol{n} th term of G.P. is given by $a_{n}=a r^{n-1}$.
Last term l of a G.P. is same as the nth term and is given by $l=a r^{n-1}$.
and the nth term from the last is given by $a_{n}=\frac{l}{r^{n-1}}$
The sum $\mathrm{S} n$ of the first n terms is given by
$\mathrm{S}_{\mathrm{n}}=\frac{a\left(r^{n}-1\right)}{r-1}$ if $\mathrm{r} \neq 1$
$\mathrm{S}_{\mathrm{n}}=$ na if $\mathrm{r}=1$
If a, G and b are in G.P., then G is called the geometric mean of the numbers a and b and is given by
$\mathrm{G}=\sqrt{a b}$
(i) If the terms of a G.P. are multiplied or divided by the same non-zero constant $(k \neq 0)$, they still remain in G.P.
If $a_{1}, a_{2}, a_{3}, \ldots$, are in G.P., then $a_{1} k, a_{2} k, a_{3} k, \ldots$ and $\frac{a_{1}}{k}, \frac{a_{2}}{k}, \frac{a_{3}}{k}, \ldots$
are also in G.P. with same common ratio, in particularly if $a_{1}, a_{2}, a_{3}, \ldots$ are in G.P., then $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, \ldots$ are also in G.P.
(ii) If $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ are two G.P.s, then $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}, \ldots$ and $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, \ldots$ are also in G.P.
(iii) If $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P. $\left(a_{i}>0 \forall i\right)$,
then $x^{a 1}, x^{a 2}, x^{a 3}, \ldots$, are in G.P. $(\forall x>0)$
(iv) If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in G.P., then $a_{1} a_{n}=a_{2} a^{n-1}=a_{3} a^{n-2}=\ldots$

Example 9 Find the 10th and nth terms of the G.P. $5,25,125, \ldots$.
Solution Here $a=5$ and $r=5$. Thus, $a_{10}=5(5)^{10-1}=5(5)^{9}=5^{10}$
and $a_{n}=a r^{n-1}=5(5)^{n-1}=5^{n}$.

Example10 Which term of the G.P., $2,8,32, \ldots$ up to n terms is 131072 ?
Solution Let 131072 be the nth term of the given G.P. Here $a=2$ and $r=4$.
Therefore $131072=a_{n}=2(4)^{n-1}$ or $65536=4^{n-1}$
This gives $4^{8}=4^{n-1}$.
So that $n-1=8$, i.e., $n=9$. Hence, 131072 is the 9 th term of the G.P.
Example11 In a G.P., the 3rd term is 24 and the 6th term is 192 .Find the 10th term.
Solution Here, $a_{3}=a r^{2}=24$
And $\quad a_{6}=a r^{5}=92 \ldots$ (2)
Dividing (2) by (1), we get $r=2$. Substituting $r=2$ in (1), we get $a=6$.
Hence $a_{10}=6(2)^{9}=3072$.
Example 12 Find the sum of first n terms and the sum of first 5 terms of the geometric series $1+\frac{2}{3}+\frac{4}{9}+\ldots$

Solution Here $a=1$ and $r=\frac{2}{3}$. Therefore

$$
\mathrm{S}_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{\left[1-\left(\frac{2}{3}\right)^{n}\right]}{1-\frac{2}{3}}=3\left[1-\left(\frac{2}{3}\right)^{n}\right]
$$

In particular, $S_{5}=3\left[1-\left(\frac{2}{3}\right)^{5}\right]=3 \times \frac{211}{243}=\frac{211}{81}$.

Example 13 How many terms of the G.P. $3, \frac{3}{2}, \frac{3}{4}, \ldots$ are needed to give the sum $\frac{3069}{512}$?

Solution Let n be the number of terms needed. Given that $a=3, r=\frac{1}{2}$ and $\mathrm{S}_{n}=\frac{3069}{512}$
Since

$$
\mathrm{S}_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

Therefore

$$
\frac{3069}{512}=\frac{3\left(1-\frac{1}{2^{n}}\right)}{1-\frac{1}{2}}=6\left(1-\frac{1}{2^{n}}\right)
$$

or

$$
\frac{3069}{3072}=1-\frac{1}{2^{n}}
$$

or

$$
\begin{aligned}
\frac{1}{2^{n}} & =1-\frac{3069}{3072}=\frac{3}{3072}=\frac{1}{1024} \\
2^{n} & =1024=2^{10}, \text { which gives } n=10 .
\end{aligned}
$$

or
Example 14 The sum of first three terms of a G.P. is $\frac{13}{12}$ and their product is -1 .
Find the common ratio and the terms.
Solution Let $\frac{a}{r}, a, a r$ be the first three terms of the G.P. Then

$$
\begin{equation*}
\frac{a}{r}+a r+a=\frac{13}{12} \tag{1}
\end{equation*}
$$

and $\quad\left(\frac{a}{r}\right)(a)(a r)=-1$
From (2), we get $a^{3}=-1$, i.e., $a=-1$ (considering only real roots)
Substituting $a=-1$ in (1), we have

$$
-\frac{1}{r}-1-r=\frac{13}{12} \text { or } 12 r^{2}+25 r+12=0
$$

This is a quadratic in r, solving, we get $r=-\frac{3}{4}$ or $-\frac{4}{3}$.

Example15 Find the sum of the sequence $7,77,777,7777, \ldots$ to n terms.
Solution This is not a G.P., however, we can relate it to a G.P. by writing the terms as
$\mathrm{S}_{n}=7+77+777+7777+\ldots$ to n terms
$=\frac{7}{9}[9+99+999+9999 \ldots$ to n term $]$
$=\frac{7}{9}\left[(10-1)+(10-1)^{2}+(10-1)^{3}+(10-1)^{4}+\ldots . . . n\right.$ terms $]$
$=\frac{7}{9}\left[\left(10+10^{2}+10^{3}+\ldots . . n\right.\right.$ terms $)-(1+1+1 \ldots . n$ terms $\left.)\right]$
$=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$.
Example 16 A person has 2 parents, 4 grandparents, 8 great grandparents, and so on.
Find the number of his ancestors during the ten generations preceding his own.
Solution Here $a=2, r=2$ and $n=10$
Using the sum formula $\mathrm{S}_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
We have $S_{10}=2\left(2^{10}-1\right)=2046$
Hence, the number of ancestors preceding the person is 2046.
Example17 Insert three numbers between 1 and 256 so that the resulting
sequence
is a G.P.
Solution Let G1, G2,G3 be three numbers between 1 and 256 such that

$$
1, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, 256 \text { is a G.P. }
$$

Therefore $256=r^{4}$ giving $r= \pm 4$ (Taking real roots only)
For $r=4$, we have $\mathrm{G}_{1}=a r=4, \mathrm{G}_{2}=a r^{2}=16, \mathrm{G}_{3}=a r^{3}=64$
Similarly, for $r=-4$, numbers are $-4,16$ and -64 .
Hence, we can insert 4, 16, 64 between 1 and 256 so that the resulting sequences are in G.P.

PYQ \& EXPECTED QUESTIONS

Q) Find the 12 th term of a G.P. whose 8th term is 192 and the common ratio is 2 .
Q) The 4th term of a G.P. is square of its second term, and the first term is -3 . Determine its 7th term
Q) For what values of x, the numbers $\frac{-2}{7}, x \frac{-7}{2}$ are in G.P.?
Q) How many terms of G.P. $3,3^{2}, 3^{3}, \ldots$ are needed to give the sum 120 ?
Q) Find the sum to n terms of the sequence, $8,88,888,8888 \ldots$.
Q) Geometric mean of 16 and 4 is
i) 20
ii) 4
iii) 10
iv) 8
Q) Find the 10th term of a G.P., whose 3rd term is 24 and 6th term is 192.

