8. BINOMIAL THEOREM

Binomial Theorem for Positive Integral Indices

Let us have a look at the following identities done earlier:

$$
\begin{aligned}
& (a+b)^{0}=1 \quad a+b \neq 0 \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=(a+b)^{3}(a+b)=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

In these expansions, we observe that
(i) The total number of terms in the expansion is one more than the index. For example, in the expansion of $(a+b)^{2}$, number of terms is 3 whereas the index of $(a+b)^{2}$ is 2 .
(ii) Powers of the first quantity ' a ' go on decreasing by 1 whereas the powers of the second quantity ' b ' increase by 1 , in the successive terms.
(iii) In each term of the expansion, the sum of the indices of a and b is the same and is equal to the index of $a+b$.
Binomial theorem for any positive integer n,
$(a+b)^{n}={ }^{n} \mathrm{C}_{0} a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+{ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}+\ldots+{ }^{n} \mathrm{C}_{n-1} a \cdot b^{n-1}+{ }^{n} \mathrm{C}_{n} b^{n}$

Observations

1. The notation $\sum_{k=0}^{n}{ }^{n} \mathrm{C}_{k} a^{n-k} b^{k}$ stands for

$$
{ }^{n} \mathrm{C}_{0} a^{n} b^{0}+{ }^{n} \mathrm{C}_{1} a^{n-1} b^{1}+\ldots+{ }^{n} \mathrm{C}_{\mathrm{r}} a^{n-r} b^{r}+\ldots+{ }^{n} \mathrm{C}_{n} a^{n-n} b^{n} \text {, where } b^{0}=1=a^{n-n} .
$$

Hence the theorem can also be stated as

$$
(a+b)^{n}=\sum_{k=0}^{n}{ }^{n} \mathrm{C}_{k} a^{n-k} b^{k}
$$

2. The coefficients ${ }^{n} \mathrm{C}_{r}$ occuring in the binomial theorem are known as binomial coefficients.
3. There are $(n+1)$ terms in the expansion of $(a+b)^{n}$, i.e., one more than the index.
4. In the successive terms of the expansion the index of a goes on decreasing by unity. It is n in the first term, $(n-1)$ in the second term, and so on ending with zero in the last term. At the same time the index of b increases by unity, starting with zero in the first term, 1 in the second and so on ending with n in the last term.
5. In the expansion of $(a+b)^{n}$, the sum of the indices of a and b is $n+0=n$ in the first term, $(n-1)+1=n$ in the second term and so on $0+n=n$ in the last term. Thus, it can be seen that the sum of the indices of a and b is n in every term of the expansion.

8.1.5 The $p^{\text {dh }}$ term from the end

The $p^{\text {th }}$ term from the end in the expansion of $(a+b)^{n}$ is $(n-p+2)^{\text {th }}$ term from the beginning.

8.1.6 Middle terms

The middle term depends upon the value of n.
(a) If n is even: then the total number of terms in the expansion of $(a+b)^{n}$ is $n+1$ (odd). Hence, there is only one middle term, i.e., $\left(\frac{n}{2}+1\right)^{\text {th }}$ term is the middle term.
(b) If n is odd: then the total number of terms in the expansion of $(a+b)^{n}$ is $n+1$ (even). So there are two middle terms i.e., $\left(\frac{n+1}{2}\right)^{\text {th }}$ and $\left(\frac{n+3}{2}\right)^{\text {th }}$ are two middle terms.

8.1.7 Binomial coefficient

In the Binomial expression, we have

$$
\begin{equation*}
(a+b)^{n}={ }^{n} \mathrm{C}_{0} a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+{ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}+\ldots+{ }^{n} \mathrm{C}_{n} b^{n} \tag{1}
\end{equation*}
$$

The coefficients ${ }^{n} \mathrm{C}_{0},{ }^{n} \mathrm{C}_{1},{ }^{n} \mathrm{C}_{2}, \ldots,{ }^{n} \mathrm{C}_{n}$ are known as binomial or combinatorial coefficients.

Putting $a=b=1$ in (1), we get

$$
{ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{2}+\ldots+{ }^{n} \mathrm{C}_{n}=2^{n}
$$

Thus the sum of all the binomial coefficients is equal to 2^{n}.
Again, putting $a=1$ and $b=-1$ in (i), we get

$$
{ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{2}+{ }^{n} \mathrm{C}_{4}+\ldots={ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{3}+{ }^{n} \mathrm{C}_{5}+\ldots
$$

Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to $\frac{2^{n}}{2}=2^{n-1}$.

$$
{ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{2}+{ }^{n} \mathrm{C}_{4}+\ldots={ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{3}+{ }^{n} \mathrm{C}_{5}+\ldots=2^{n-1}
$$

Example 1 Expand $\left(x^{2}+\frac{3}{x}\right)^{4}, x \neq 0$
Solution By using binomial theorem, we have

$$
\begin{aligned}
x^{2}+\frac{3}{x} & ={ }^{4} \mathrm{C}_{0}\left(x^{2}\right)^{4}+{ }^{4} \mathrm{C}_{1}\left(x^{2}\right)^{3}\left(\frac{3}{x}\right)+{ }^{4} \mathrm{C}_{2}\left(x^{2}\right)^{2}\left(\frac{3}{x}\right)^{2}+{ }^{4} \mathrm{C}_{3}\left(x^{2}\right)\left(\frac{3}{x}\right)^{3}+{ }^{4} \mathrm{C}_{4}\left(\frac{3}{x}\right)^{4} \\
& =x^{8}+4 \cdot x^{6} \cdot \frac{3}{x}+6 \cdot x^{4} \cdot \frac{9}{x^{2}}+4 \cdot x^{2} \cdot \frac{27}{x^{3}}+\frac{81}{x^{4}} \\
& =x^{8}+12 x^{5}+54 x^{2}+\frac{108}{x}+\frac{81}{x^{4}} .
\end{aligned}
$$

Example 2 Compute (98) ${ }^{5}$.
Solution We express 98 as the sum or difference of two numbers whose powers are easier to calculate, and then use Binomial Theorem.
Write $98=100-2$
Therefore, $(98)^{5}=(100-2)^{5}$

$$
\begin{aligned}
& ={ }^{5} \mathrm{C}_{0}(100)^{5}-{ }^{5} \mathrm{C}_{1}(100)^{4} .2+{ }^{5} \mathrm{C}_{2}(100)^{3} 2^{2} \\
& -{ }^{5} \mathrm{C}_{3}(100)^{2}(2)^{3}+{ }^{5} \mathrm{C}_{4}(100)(2)^{4}-{ }^{5} \mathrm{C}_{5}(2)^{5} \\
& =10000000000-5 \times 100000000 \times 2+10 \times 1000000 \times 4-10 \times 10000 \\
& \quad \times 8+5 \times 100 \times 16-32
\end{aligned}
$$

$$
=10040008000-1000800032=9039207968
$$

Example 4 Using binomial theorem, prove that $6^{n}-5 n$ always leaves remainder 1 when divided by 25 .

Solution For two numbers a and b if we can find numbers q and r such that $a=b q+r$, then we say that b divides a with q as quotient and r as remainder. Thus, in order to show that $6^{n}-5 n$ leaves remainder 1 when divided by 25 , we prove that $6^{n}-5 n=25 k+1$, where k is some natural number.

We have

$$
(1+a)^{n}={ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{1} a+{ }^{n} \mathrm{C}_{2} a^{2}+\ldots+{ }^{n} \mathrm{C}_{n} a^{n}
$$

For $a=5$, we get

$$
(1+5)^{n}={ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{1} 5+{ }^{n} \mathrm{C}_{2} 5^{2}+\ldots+{ }^{n} \mathrm{C}_{n} 5^{n}
$$

i.e.

$$
(6)^{n}=1+5 n+5^{2} \cdot{ }^{n} \mathrm{C}_{2}+5^{3} \cdot{ }^{n} \mathrm{C}_{3}+\ldots+5^{n}
$$

i.e.

$$
6^{n}-5 n=1+5^{2}\left({ }^{n} \mathrm{C}_{2}+{ }^{n} \mathrm{C}_{3} 5+\ldots+5^{n-2}\right)
$$

or

$$
6^{n}-5 n=1+25\left({ }^{n} \mathrm{C}_{2}+5 \cdot .^{n} \mathrm{C}_{3}+\ldots+5^{n-2}\right)
$$

or

$$
6^{n}-5 n=25 k+1 \quad \text { where } k={ }^{n} \mathrm{C}_{2}+5 .{ }^{n} \mathrm{C}_{3}+\ldots+5^{n-2} .
$$

This shows that when divided by $25,6^{n}-5 n$ leaves remainder 1 .

Example 5

Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$
Solution
$(\mathrm{a}+\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}$
$(\mathrm{a}-\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}$

$$
\begin{aligned}
\therefore(\mathrm{a}+\mathrm{b})^{4}-(\mathrm{a}-\mathrm{b})^{4}= & { }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4} \\
& -\left[{ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}\right] \\
= & 2\left({ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}\right)=2\left(4 \mathrm{a}^{3} \mathrm{~b}+4 \mathrm{ab}^{3}\right) \\
= & 8 \mathrm{ab}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)
\end{aligned}
$$

By putting $\mathrm{a}=\sqrt{3}$ and $\mathrm{b}=\sqrt{2}$, we obtain

$$
\begin{aligned}
(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4} & =8(\sqrt{3})(\sqrt{2})\left\{(\sqrt{3})^{2}+(\sqrt{2})^{2}\right\} \\
& =8(\sqrt{6})\{3+2\}=40 \sqrt{6}
\end{aligned}
$$

Example 6

Find $(x+1)^{6}+(x-1)^{6}$. Hence or otherwise evaluate $(\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6}$
Solution

$$
\begin{aligned}
& (\mathrm{x}+1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\
& (\mathrm{x}-1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6} \\
& \begin{aligned}
\therefore(\mathrm{x}+1)^{6}+(\mathrm{x}-1)^{6} & =2\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6}\right] \\
& =2\left[\mathrm{x}^{6}+15 \mathrm{x}^{4}+15 \mathrm{x}^{2}+1\right]
\end{aligned} \\
& \begin{aligned}
(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6} & =2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right] \\
& =2(8+15 \times 4+15 \times 2+1) \\
& =2(8+60+30+1) \\
& =2(99)=198
\end{aligned}
\end{aligned}
$$

General and Middle Terms

1. In the binomial expansion for $(a+b)^{n}$, we observe that the first term is ${ }^{n} \mathrm{C}_{0} a^{n}$, the second term is ${ }^{n} \mathrm{C}_{1} a^{n-1} b$, the third term is ${ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}$, and so on. Looking at the pattern of the successive terms we can say that the $(r+1)^{t h}$ term is ${ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}$. The $(r+1)^{t h}$ term is also called the general term of the expansion $(a+b)^{n}$. It is denoted by T_{r+1}. Thus $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}$

general term $\mathbf{T}_{r+1}={ }^{n} \mathbf{C}_{r} a^{n-r} b^{r}$.

3. In the expansion of $\left(x+\frac{1}{x}\right)^{2 n}$, where $x \neq 0$, the middle term is $\left(\frac{2 n+1+1}{2}\right)^{\text {th }}$ i.e., $(n+1)^{\text {th }}$ term, as $2 n$ is even.

It is given by ${ }^{2 n} \mathrm{C}_{n} x^{n}\left(\frac{1}{x}\right)^{n}={ }^{2 n} \mathrm{C}_{n}$ (constant).
This term is called the term independent of x or the constant term.

Example 5 Find a if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion $(2+a)^{50}$ are equal.
Solution The $(r+1)^{t h}$ term of the expansion $(x+y)^{n}$ is given by $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$.
For the $17^{\text {th }}$ term, we have, $r+1=17$, i.e., $r=16$
Therefore, $\quad \mathrm{T}_{17}=\mathrm{T}_{16+1}={ }^{50} \mathrm{C}_{16}(2)^{50-16} a^{16}$

$$
={ }^{50} \mathrm{C}_{16} 2^{34} a^{16 .}
$$

Similarly, $\quad \mathrm{T}_{18}={ }^{50} \mathrm{C}_{17} 22^{33} a^{17}$
Given that $\quad \mathrm{T}_{17}=\mathrm{T}_{18}$
So ${ }^{50} \mathrm{C}_{16}(2)^{34} a^{16}={ }^{50} \mathrm{C}_{17}(2)^{33} a^{17}$

Therefore

$$
\frac{{ }^{50} \mathrm{C}_{16} \cdot 2^{34}}{{ }^{50} \mathrm{C}_{17} \cdot 2^{33}}=\frac{a^{17}}{a^{16}}
$$

i.e., $\quad a=\frac{{ }^{50} \mathrm{C}_{16} \times 2}{{ }^{50} \mathrm{C}_{17}}=\frac{50!}{16!34!} \times \frac{17!.33!}{50!} \times 2=1$

PYQ \& EXPECTED QUESTIONS

Q)
i) The number of terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is \qquad .(IMP-2013)
ii) Find the middle term in the above expansion.

Ans:

i) $10+1=11$ terms
ii)

$$
\begin{aligned}
& \text { Middle term }=t_{\frac{10}{2}+1}=t_{6}=10 C_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5} \\
& =10 C_{5} x^{5} \times 3^{-5} \times 9^{5} y^{5} \\
& =10 C_{5} x^{5} \times 3^{-5} \times 3^{10} y^{5}=10 C_{5} \times 3^{5} x^{5} y^{5}
\end{aligned}
$$

Q)
i) Find the general term in the expansion of $(x+y)^{n}$
ii) Find the middle term in the expansion of $\left(2 x+\frac{1}{3 y}\right)^{18}$

Ans:

i) General term $=t_{r+1}=n C_{r}(x)^{n-r}(y)^{r}$
ii) Middle term $=t_{\frac{n}{2}+1}=t_{\frac{18}{2}+1}=t_{10}$
$=18 C_{9}(2 x)^{18-9}\left(\frac{1}{3 y}\right)^{9}$
$=18 C_{9}(2 x)^{9}\left(\frac{1}{3 y}\right)^{9}$

Q)

i) Write the general term in the expansion of $(a+b)^{n}$
ii) Find the 9 th term in the expansion of $\left(\frac{x}{2}+\frac{6}{x^{2}}\right)^{12}$

Ans:

i) General term $=t_{r+1}={ }^{12} C_{r}(a)^{12-r}(b)^{r}$
ii) $t_{9}={ }^{12} C_{8}\left(\frac{x}{2}\right)^{12-8}\left(\frac{6}{x^{2}}\right)^{8}$
$={ }^{12} C_{8}\left(\frac{x}{2}\right)^{4}\left(\frac{6}{x^{2}}\right)^{8}$
$={ }^{12} C_{4} \frac{x^{4}}{2^{4}} \times \frac{2^{8} \times 3^{8}}{x^{16}}={ }^{12} C_{4} \frac{2^{4} \times 3^{8}}{x^{12}}$
Q)

Consider the expansion of $\left(\frac{x}{9}+9 y\right)^{2 n}$
i) The number of terms in the expansion is \qquad
(a) $2 n$
(b) $n+1$
(c) $2 n+1$
(d) $2 \mathrm{n}-1$
ii) What is its $(\mathrm{n}+1)^{\text {th }}$ term?
iii) If $\mathrm{n}=5$, find its middle term.

Ans:

i) C) $2 n+1$
ii) $t_{n+1}=2 n C_{n}\left(\frac{x}{9}\right)^{2 n-n}(9 y)^{n}=2 n C_{n}\left(\frac{x}{9}\right)^{n}(9 y)^{n}$

$$
=2 n C_{n}(x)^{n}(y)^{n}
$$

iii) If $n=5, \Rightarrow 2 n=10$ therefore the middle term will be $\frac{10}{2}+1=6$ the term.

$$
t_{6}=10 C_{5}(x)^{5}(y)^{5}
$$

