5. COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Complex numbers

(a) A number which can be written in the form $a+i b$, where a, b are real numbers and $i=-1$ is called a complex number.
(b) If $z=a+i b$ is the complex number, then a and b are called real and imaginary parts, respectively, of the complex number and written as $\operatorname{Re}(z)=a$, $\operatorname{I} m(z)=b$.
(c) Order relations "greater than" and "less than" are not defined for complex numbers.
(d) If the imaginary part of a complex number is zero, then the complex number is known as purely real number and if real part is zero, then it is called purely imaginary number, for example, 2 is a purely real number because its imaginary part is zero and $3 i$ is a purely imaginary number because its real part is zero.
Algebra of complex numbers
(a) Two complex numbers $z 1=a+i b$ and $z 2=c+i d$ are said to be equal if $a=c$ and $b=d$.
(b) Let $z 1=a+i b$ and $z 2=c+i d$ be two complex numbers then $z 1+z 2=(a+c)+i(b+d)$.
Addition of complex numbers satisfies the following properties

1. As the sum of two complex numbers is again a complex number, the set of complex numbers is closed with respect to addition.
2. Addition of complex numbers is commutative, i.e., $z 1+z 2=z 2+z 1$
3. Addition of complex numbers is associative, i.e., $(z 1+z 2)+z 3=z 1+(z 2+$ z3)
4. For any complex number $z=x+i y$, there exist 0 , i.e., $(0+0 i)$ complex number such that $z+0=0+z=z$, known as identity element for addition.
5. For any complex number $z=x+i y$, there always exists a number $-z=-a-$ ib such that $z+(-z)=(-z)+z=0$ and is known as the additive inverse of z. Multiplication of complex numbers
Let $z 1=a+i b$ and $z 2=c+i d$, be two complex numbers. Then $z 1 \cdot z 2=(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$
6. As the product of two complex numbers is a complex number, the set of complex numbers is closed with respect to multiplication.
7. Multiplication of complex numbers is commutative, i.e., $z 1 . z 2=z 2 . z 1$
8. Multiplication of complex numbers is associative, i.e., $(z 1 . z 2) \cdot z 3=z 1 \cdot(z 2 . z 3)$
9. For any complex number $z=x+i y$, there exists a complex number 1, i.e., $(1+0 i)$ such that
$z .1=1 . z=z$, known as identity element for multiplication.
10. For any non zero complex number $z=x+i y$, there exists a complex number $\frac{1}{z}$ such that $z \cdot \frac{1}{z}=\frac{1}{z} \cdot z=1$, i.e., multiplicative inverse of $a+i b=\frac{1}{a+i b}=\frac{a-i b}{a^{2}+b^{2}}$.
11. For any three complex numbers z_{1}, z_{2} and z_{3},

$$
\begin{aligned}
& z_{1} \cdot\left(z_{2}+z_{3}\right)=z_{1} \cdot z_{2}+z_{1} \cdot z_{3} \\
& \left(z_{1}+z_{2}\right) \cdot z_{3}=z_{1} \cdot z_{3}+z_{2} \cdot z_{3}
\end{aligned}
$$

and
i.e., for complex numbers multiplication is distributive over addition.
5.1.7 Let $z_{1}=a+i b$ and $z_{2}(\neq 0)=c+i d$. Then

$$
z_{1} \div z_{2}=\frac{z_{1}}{z_{2}}=\frac{a+i b}{c+i d}=\frac{(a c+b d)}{c^{2}+d^{2}}+i \frac{(b c-a d)}{c^{2}+d^{2}}
$$

Conjugate of a complex number
Let $z=a+i b$ be a complex number. Then a complex number obtained by changing the sign of imaginary part of the complex number is called the conjugate of z and it is denoted by z, i.e., $z=a-i b$.
Note that additive inverse of z is $-a-i b$ but conjugate of z is $a-i b$.
We have:

1. $\overline{(\bar{z}})=z$
2. $z+\bar{z}=2 \operatorname{Re}(z), z-\bar{z}=2 i \operatorname{Im}(z)$
3. $z=\bar{z}$, if z is purely real.
4. $z+\bar{z}=0 \Leftrightarrow z$ is purely imaginary
5. $z . \bar{z}=\{\operatorname{Re}(z)\}^{2}+\{\operatorname{Im}(z)\}^{2}$.
6. $\left.\overline{\left(z_{1}+z_{2}\right.}\right)=\bar{z}_{1}+\bar{z}_{2},\left(\overline{z_{1}-z_{2}}\right)=\bar{z}_{1}-\bar{z}_{2}$
7. $\left(\overline{z_{1} \cdot z_{2}}\right)=\left(\bar{z}_{1}\right)\left(\bar{z}_{2}\right), \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\left(\overline{z_{1}}\right)}{\left(\bar{z}_{2}\right)}\left(\bar{z}_{2} \neq 0\right)$

5.3.5 Power of i we know that

$$
\begin{array}{ll}
i^{3}=i^{2} i=(-1) i=-i, & i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1 \\
i^{5}=\left(i^{2}\right)^{2} i=(-1)^{2} i=i, & i^{6}=\left(i^{2}\right)^{3}=(-1)^{3}=-1, \text { etc. }
\end{array}
$$

Also, we have $\quad i^{-1}=\frac{1}{i} \times \frac{i}{i}=\frac{i}{-1}=-i, \quad i^{-2}=\frac{1}{i^{2}}=\frac{1}{-1}=-1$,

$$
i^{-3}=\frac{1}{i^{3}}=\frac{1}{-i} \times \frac{i}{i}=\frac{i}{1}=i, \quad i^{-4}=\frac{1}{i^{4}}=\frac{1}{1}=1
$$

In general, for any integer $k, i^{4 k}=1, i^{4 k+1}=i, i^{i^{k+2}}=-1, i^{i^{k+3}}=-i$
5.3.7 Identities We prove the following identity

$$
\left(z_{1}+z_{2}\right)^{2}=z_{1}^{2}+z_{2}^{2}+2 z_{1} z_{2} \text {, for all complex numbers } z_{1} \text { and } z_{2} .
$$

Proof We have, $\left(z_{1}+z_{2}\right)^{2}=\left(z_{1}+z_{2}\right)\left(z_{1}+z_{2}\right)$,

$$
\begin{array}{ll}
=\left(z_{1}+z_{2}\right) z_{1}+\left(z_{1}+z_{2}\right) z_{2} & \text { (Distributive law) } \\
=z_{1}^{2}+z_{2} z_{1}+z_{1} z_{2}+z_{2}^{2} & \text { (Distributive law) } \\
=z_{1}^{2}+z_{1} z_{2}+z_{1} z_{2}+z_{2}^{2} & \text { (Commutative law of multiplication) } \\
=z_{1}^{2}+2 z_{1} z_{2}+z_{2}^{2} &
\end{array}
$$

Similarly, we can prove the following identities:
(i) $\left(z_{1}-z_{2}\right)^{2}=z_{1}^{2}-2 z_{1} z_{2}+z_{2}^{2}$
(ii) $\left(z_{1}+z_{2}\right)^{3}=z_{1}^{3}+3 z_{1}^{2} z_{2}+3 z_{1} z_{2}^{2}+z_{2}^{3}$
(iii) $\left(z_{1}-z_{2}\right)^{3}=z_{1}^{3}-3 z_{1}^{2} z_{2}+3 z_{1} z_{2}^{2}-z_{2}^{3}$
(iv) $z_{1}^{2}-z_{2}^{2}=\left(z_{1}+z_{2}\right)\left(z_{1}-z_{2}\right)$

In fact, many other identities which are true for all real numbers, can be proved to be true for all complex numbers.

Example 2 Express the following in the form of $a+b i$:
(i) $(-5 i)\left(\frac{1}{8} i\right)$
(ii) $(-i)(2 i)\left(-\frac{1}{8} i\right)^{3}$

Solution
(i) $(-5 i)\left(\frac{1}{8} i\right)=\frac{-5}{8} i^{2}=\frac{-5}{8}(-1)=\frac{5}{8}=\frac{5}{8}+i 0$
(ii) $(-i)(2 i)\left(-\frac{1}{8} i\right)^{3}=2 \times \frac{1}{8 \times 8 \times 8} \times i^{5}=\frac{1}{256}\left(i^{2}\right)^{2} i=\frac{1}{256} i$.

Example 3 Express $(5-3 i)^{3}$ in the form $a+i b$.
Solution We have, $(5-3 i)^{3}=5^{3}-3 \times 5^{2} \times(3 i)+3 \times 5(3 i)^{2}-(3 i)^{3}$

$$
=125-225 i-135+27 i=-10-198 i .
$$

Example 4 Express $(-\sqrt{3}+\sqrt{-2})(2 \sqrt{3}-i)$ in the form of $a+i b$
Solution We have, $(-\sqrt{3}+\sqrt{-2})(2 \sqrt{3}-i)=(-\sqrt{3}+\sqrt{2} i)(2 \sqrt{3}-i)$

$$
=-6+\sqrt{3} i+2 \sqrt{6} i-\sqrt{2} i^{2}=(-6+\sqrt{2})+\sqrt{3}(1+2 \sqrt{2}) i
$$

5.4 The Modulus and the Conjugate of a Complex Number

Let $z=a+i b$ be a complex number. Then, the modulus of z, denoted by $|z|$, is defined to be the non-negative real number $\sqrt{a^{2}+b^{2}}$, i.e., $|z|=\sqrt{a^{2}+b^{2}}$ and the conjugate of z, denoted as \bar{z}, is the complex number $a-i b$, i.e., $\bar{z}=a-i b$.

For example,

$$
|3+i|=\sqrt{3^{2}+1^{2}}=\sqrt{10},|2-5 i|=\sqrt{2^{2}+(-5)^{2}}=\sqrt{29},
$$

and

$$
\overline{3+i}=3-i, \quad \overline{2-5 i}=2+5 i, \overline{-3 i-5}=3 i-5
$$

Observe that the multiplicative inverse of the non-zero complex number z is given by
or

$$
\begin{aligned}
& z^{-1}=\frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}=\frac{a-i b}{a^{2}+b^{2}}=\frac{\bar{z}}{|z|^{2}} \\
& z \bar{z}=|z|^{2}
\end{aligned}
$$

Furthermore, the following results can easily be derived.
For any two compex numbers z_{1} and z_{2}, we have

$$
\begin{array}{ll}
\text { (i) }\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| & \text { (ii) }\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \text { provided }\left|z_{2}\right| \neq 0 \\
\text { (iii) } \overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}} & \text { (iv) } \overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}} \text { (v) } \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}} \text { provided } z_{2} \neq 0 .
\end{array}
$$

Example 5 Find the multiplicative inverse of $2-3 i$.
Solution Let $z=2-3 i$
Then

$$
\bar{z}=2+3 i \text { and } \quad|z|^{2}=2^{2}+(-3)^{2}=13
$$

Therefore, the multiplicative inverse of $2-3 i$ is given by

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{2+3 i}{13}=\frac{2}{13}+\frac{3}{13} i
$$

The above working can be reproduced in the following manner also,

$$
\begin{aligned}
z^{-1} & =\frac{1}{2-3 i}=\frac{2+3 i}{(2-3 i)(2+3 i)} \\
& =\frac{2+3 i}{2^{2}-(3 i)^{2}}=\frac{2+3 i}{13}=\frac{2}{13}+\frac{3}{13} i
\end{aligned}
$$

Example 6 Express the following in the form $a+i b$

$$
\text { (i) } \frac{5+\sqrt{2} i}{1-\sqrt{2} i}
$$

(ii) i^{35}

Solution (i) We have, $\frac{5+\sqrt{2} i}{1-\sqrt{2} i}=\frac{5+\sqrt{2} i}{1-\sqrt{2} i} \times \frac{1+\sqrt{2} i}{1+\sqrt{2} i}=\frac{5+5 \sqrt{2} i+\sqrt{2} i-2}{1-(\sqrt{2} i)^{2}}$

$$
=\frac{3+6 \sqrt{2} i}{1+2}=\frac{3(1+2 \sqrt{2} i)}{3}=1+2 \sqrt{2} i .
$$

(ii) $i^{-35}=\frac{1}{i^{35}}=\frac{1}{\left(i^{2}\right)^{17} i}=\frac{1}{-i} \times \frac{i}{i}=\frac{i}{-i^{2}}=i$

PYQ \& EXPECTED QUESTIONS

Q) Express each of the complex number given in the Exercises 1 to 6 in the form $a+i b$.

1. $(5 i)\left(-\frac{3}{5} i\right)$
$2 . i^{9}+i^{19}$
2. i^{-39}
3. $3(7+i 7)+i(7+i 7)$
4. $(1-i)-(-1+i 6)$
5. $\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
Q) Find the multiplicative inverse of each of the complex numbers given
a. $4-3 i$
b. $5+3 i$
c. $-i$
Q) Express the following expression in the form of $a+i b$:

$$
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}
$$

Q) If a complex number lies in the third quadrant, then its conjugate lies in the \qquad .
Q) The multiplicative inverse of the complex number $3+4 i=$ \qquad
Q) $i^{18}=$ \qquad
i) 1
ii) 0
iii) -1
iv) i
Q) Express $\frac{1+i}{1-i}$ in the form $\mathrm{a}+\mathrm{ib}$.
Q) Express $\frac{2+i}{2-i}$ in the form $a+i b$.
Q) Express the complex number $\frac{3-\sqrt{-16}}{1-\sqrt{-9}}$ in the form.

