4. PRINCIPLE OF MATHEMATICAL INDUCTION(PMI)

The principle of mathematical induction

Let $\mathrm{P}(n)$ be a given statement involving the natural number n such that
(i) The statement is true for $n=1$, i.e., $\mathrm{P}(1)$ is true (or true for any fixed natural number) and
(ii) If the statement is true for $n=k$ (where k is a particular but arbitrary natural number), then the statement is also true for $n=k+1$, i.e, truth of $\mathrm{P}(k)$ implies the truth of $\mathrm{P}(k+1)$. Then $\mathrm{P}(n)$ is true for all natural numbers n.

Example 1 For all $n \geq 1$, prove that

$$
1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution Let the given statement be $\mathrm{P}(n)$, i.e.,

$$
\mathrm{P}(n): 1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

For $n=1, \quad \mathrm{P}(1): 1=\frac{1(1+1)(2 \times 1+1)}{6}=\frac{1 \times 2 \times 3}{6}=1$ which is true.
Assume that $\mathrm{P}(k)$ is true for some positive integer k, i.e.,

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+4^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6} \tag{1}
\end{equation*}
$$

We shall now prove that $\mathrm{P}(k+1)$ is also true. Now, we have

$$
\begin{aligned}
\left(1^{2}+2^{2}\right. & \left.+3^{2}+4^{2}+\ldots+k^{2}\right)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+1+1)\{2(k+1)+1\}}{6}
\end{aligned}
$$

Thus $\mathrm{P}(k+1)$ is true, whenever $\mathrm{P}(k)$ is true.
Hence, from the principle of mathematical induction, the statement $\mathrm{P}(n)$ is true for all natural numbers n.

Example 3 For all $n \geq 1$, prove that

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Solution We can write

$$
\mathrm{P}(n): \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

We note that $\mathrm{P}(1): \frac{1}{1.2}=\frac{1}{2}=\frac{1}{1+1}$, which is true. Thus, $\mathrm{P}(n)$ is true for $n=1$. Assume that $\mathrm{P}(k)$ is true for some natural number k,
i.e., $\quad \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{k(k+1)}=\frac{k}{k+1}$

We need to prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true. We have

$$
\begin{aligned}
& \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} \\
& =\left[\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{k(k+1)}\right]+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{\left(k^{2}+2 k+1\right)}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}=\frac{k+1}{(k+1)+1}
\end{aligned}
$$

Thus $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true. Hence, by the principle of mathematical induction, $\mathrm{P}(n)$ is true for all natural numbers.

Most repeated question (Example:4)
Example 4 For every positive integer n, prove that $7^{n}-3^{n}$ is divisible by 4 .
Solution We can write
$\mathrm{P}(n): 7^{n}-3^{n}$ is divisible by 4.
We note that
$\mathrm{P}(1): 7^{1}-3^{1}=4$ which is divisible by 4 . Thus $\mathrm{P}(n)$ is true for $n=1$
Let $\mathrm{P}(k)$ be true for some natural number k,
i.e., $\mathrm{P}(k): 7^{k}-3^{k}$ is divisible by 4 .

We can write $7^{k}-3^{k}=4 d$, where $d \in \mathbf{N}$.
Now, we wish to prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Now $7^{(k+1)}-3^{(k+1)}=7^{(k+1)}-7.3^{k}+7.3^{k}-3^{(k+1)}$

$$
\begin{aligned}
& =7\left(7^{k}-3^{k}\right)+(7-3) 3^{k}=7(4 d)+(7-3) 3^{k} \\
& =7(4 d)+4.3^{k}=4\left(7 d+3^{k}\right)
\end{aligned}
$$

From the last line, we see that $7^{(\alpha+1)}-3^{(\alpha+1)}$ is divisible by 4 . Thus, $\mathrm{P}(k+1)$ is true when $\mathrm{P}(k)$ is true. Therefore, by principle of mathematical induction the statement is true for every positive integer n.
Q) For any natural number $n, 7^{n}-2^{n}$ is divisible by 5 .

Let $\mathrm{P}(\mathrm{n}): 7^{\mathrm{n}}-2^{\mathrm{n}}$ is divisible by 5 , for any natural number n .
Now, $P(1)=7^{1}-2^{1}=5$, which is divisible by 5 .
Hence, $\mathrm{P}(\mathrm{l})$ is true.
Let us assume that, $\mathrm{P}(\mathrm{n})$ is true for some natural number $\mathrm{n}=\mathrm{k}$.
$\therefore \mathrm{P}(\mathrm{k})=7^{\mathrm{k}}-2^{\mathrm{k}}$ is divisible by 5
or $7^{\mathrm{k}}-2^{\mathrm{k}}=5 \mathrm{~m}, \mathrm{~m} \in \mathrm{~N}$
Now, we have to prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
$\mathrm{P}(\mathrm{k}+1): 7^{\mathrm{k}+1}-2^{\mathrm{k}+1}$
$=7^{\mathrm{k}}-7-2^{\mathrm{k}}-2$
$=(5+2) 7^{\mathrm{k}}-2^{\mathrm{k}}-2$
$=5.7^{\mathrm{k}}+2.7^{\mathrm{k}}-2-2^{\mathrm{k}}$
$=5.7^{\mathrm{k}}+2\left(7^{\mathrm{k}}-2^{\mathrm{k}}\right)$
$=5 \cdot 7^{\mathrm{k}}+2(5 \mathrm{~m}) \quad($ using $(\mathrm{i}))$
$=5\left(7^{\mathrm{k}}+2 \mathrm{~m}\right)$, which divisible by 5 .
Thus, $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
So, by the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all natural numbers

Example 6 Prove that

$2.7^{n}+3.5^{n}-5$ is divisible by 24 , for all $n \in \mathrm{~N}$.
Solution Let the statement $\mathrm{P}(n)$ be defined as
$\mathrm{P}(n): 2.7^{n}+3.5^{n}-5$ is divisible by 24.
We note that $\mathrm{P}(n)$ is true for $n=1$, since $2.7+3.5-5=24$, which is divisible by 24 .
Assume that $\mathrm{P}(k)$ is true
i.e. $\quad 2.7^{k}+3.5^{k}-5=24 q$, when $q \in \mathbf{N}$

Now, we wish to prove that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
We have

$$
\begin{align*}
2.7^{k+1}+3.5^{k+1}-5 & =2.7^{k} \cdot 7^{1}+3.5^{k} \cdot 5^{1}-5 \\
& =7\left[2.7^{k}+3.5^{k}-5-3.5^{k}+5\right]+3.5^{k} \cdot 5-5 \\
& =7\left[24 q-3.5^{k}+5\right]+15.5^{k}-5 \\
& =7 \times 24 q-21.5^{k}+35+15.5^{k}-5 \\
& =7 \times 24 q-6.5^{k}+30 \\
& =7 \times 24 q-6\left(5^{k}-5\right) \\
& =7 \times 24 q-6(4 p)\left[\left(5^{k}-5\right) \text { is a multiple of } 4(\text { why } ?)\right] \\
& =7 \times 24 q-24 p \\
& =24(7 q-p) \\
& =24 \times r ; r=7 q-p, \text { is some natural number. } \tag{2}
\end{align*}
$$

The expression on the R.H.S. of (1) is divisible by 24 . Thus $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Hence, by principle of mathematical induction, $\mathrm{P}(n)$ is true for all $n \in \mathrm{~N}$.

PYQ \& EXPECTED QUESTIONS

Prove the following by using the principle of mathematical induction for all $n \in \mathbf{N}$:

1. $1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$.
2. $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.
3. $1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}$
4. $1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.
$5.41^{n}-14^{n}$ is a multiple of 27
