2. RELATIONS AND FUNCTIO

Relations

A relation R from a non-empty set A to a non-empty set B is a subset of the cartesian product A×B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A \times B. The second element is called the *image* of the first element

The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the *domain* of the relation R.

The set of all second elements in a relation R from a set A to a set B is called the range of the relation R. The whole set B is called the *codomain* of the relation R. Note that range \subset codomain.

Remarks

A relation may be represented algebraically either by the Roster method i. or by the Set-builder method.

An arrow diagram is a visual representation of a relation ii.

Example 7 Let $A = \{1, 2, 3, 4, 5, 6\}$. Define a relation R from A to A by

 $R = \{(x, y) : y = x + 1 \}$

(i) Depict this relation using an arrow diagram.

(ii) Write down the domain, codomain and range of R.

Solution (i) By the definition of the relation,

 $R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}.$

The corresponding arrow diagram is

(ii) We can see that the domain = $\{1, 2, 3, 4, 5, \}$

Similarly, the range = $\{2, 3, 4, 5, 6\}$

and the codomain = $\{1, 2, 3, 4, 5, 6\}$.

Example 8 The Fig 2.6 shows a relation between the sets P and Q. Write this relation (i) in set-builder form, (ii) in roster form. What is its domain and range? Solution It is obvious that the relation R is "*x* is the square of y".

(i) In set-builder form, $\mathbf{R} = \{(x, y): x \text{ is the square of } y, x \in \mathbf{P}, y \in \mathbf{Q}\}$

(ii) In roster form, $R = \{(9, 3), (9, -3), (4, 2), (4, -2), (25, 5), (25, -5)\}$

The domain of this relation is $\{4, 9, 25\}$.

The range of this relation is $\{-2, 2, -3, 3, -5, 5\}$.

Note that the element 1 is not related to any element in set P.

The set Q is the codomain of this relation.

NOTE: The total number of relations that can be defined from a set A to a set B is the number of possible subsets of A ×B. If n(A) = p and n(B) = q, then n(A × B) = pq and the total number of relations is 2^{pq} .

Example 9 Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Find the number of relations from A to B.

Solution We have,

 $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$. Since $n (A \times B) = 4$, the number of subsets of $A \times B$ is 24. Therefore, the number of relations from A into P will be 24.

relations from A into B will be 24.

Remark A relation R from A to A is also stated as a relation on A. **Example 10**

Let $A = \{1, 2, 3, \dots, 14\}$. Define a relation R from A to A by

R = {(x, y) : 3x - y = 0, where $x, y \in A$ }. Write down its domain, codomain and range.

Solution

The relation R from A to A is given as $R = \{(x, y): 3x - y = 0, where x, y \in A\}$ i.e., $R = \{(x, y): 3x = y, where x, y \in A\}$

 $\therefore \mathbf{R} = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

: Domain of $R = \{1, 2, 3, 4\}$

The whole set A is the codomain of the relation R.

: Codomain of $R = A = \{1, 2, 3... 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {3, 6, 9, 12}

Example 11

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; $x \in A, y \in B$ }. Write R in roster form.

Solution

A = {1, 2, 3, 5} and B = {4, 6, 9} R = {(x, y): the difference between x and y is odd; $x \in A, y \in B$ } \therefore R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)} **Example 12** The Fig2.7 shows a relationship between the sets P and Q. Write this relation (i) in set-builder form (ii) roster form. What is its domain and range? **Solution**

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$ (i) $R = \{(x, y): y = x - 2; x \in P\}$ or $R = \{(x, y): y = x - 2 \text{ for } x = 5, 6, 7\}$ (ii) $R = \{(5, 3), (6, 4), (7, 5)\}$ Domain of $R = \{5, 6, 7\}$ Range of $R = \{3, 4, 5\}$ **Example 13** Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}.$ (i) Write R in roster form (ii) Find the domain of R (iii) Find the range of R. **Solution** A = {1, 2, 3, 4, 6}, R = {(a, b): $a, b \in A, b$ is exactly divisible by a} $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6),$ (i) (4, 4), (6, 6)(ii) Domain of R = {1, 2, 3, 4, 6} (iii) Range of $R = \{1, 2, 3, 4, 6\}$ **Example 14** Write the relation $\mathbf{R} = \{(x, x3) : x \text{ is a prime number less than } 10\}$ in roster form **Solution** $R = \{(x, x3): x \text{ is a prime number less than } 10\}$ The prime numbers less than 10 are 2, 3, 5, and 7.

 $\therefore \mathbf{R} = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$

Some functions and their graphs

(i) **Identity function** Let **R** be the set of real numbers. Define the real valued function $f : \mathbf{R} \to \mathbf{R}$ by y = f(x) = x for each $x \in \mathbf{R}$. Such a function is called the *identity function*. Here the domain and range of *f* are **R**. The graph is a straight line as shown in Fig 2.8. It passes through the origin.

(ii) Constant function Define the function $f: \mathbf{R} \to \mathbf{R}$ by $y = f(x) = c, x \in \mathbf{R}$ where *c* is a constant and each $x \in \mathbf{R}$. Here domain of *f* is **R** and its range is $\{c\}$.

(iii) Polynomial function Define the function $f: \mathbf{R} \to \mathbf{R}$ by $y = f(x) = x^2$, $x \in \mathbf{R}$. Domain of $f = \{x : x \in \mathbf{R}\}$. Range of $f = \{x^2 : x \in \mathbf{R}\}$. The graph of f is given by Fig 2.10

(iv) the graph of the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3, x \in \mathbb{R}$.

Rational functions

Define the real valued function $f: \mathbf{R} - \{0\} \rightarrow \mathbf{R}$ defined by $1 f(x) = \frac{1}{x}$,

 $x \in \mathbf{R} - \{0\}$. The domain is all real numbers except 0 and its range is also all real numbers except 0. The graph of *f* is given in Fig 2.12.

(v) **The Modulus function** The function $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = |x| for each $x \in \mathbf{R}$ is called *modulus function*. For each non-negative value of x, f(x) is equal to x. But for negative values of x, the value of f(x) is the negative of the value of x, i.e., $f(x) = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$

The graph of the modulus function is given in Fig 2.13

vi) **Signum function** The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$f(x) = \begin{cases} 1, & if \ x > 0 \\ 0, & if \ x = 0 \\ -1, & if \ x > 0 \end{cases}$$

is called the *signum function*. The domain of the signum function is **R** and the range is the set $\{-1, 0, 1\}$. The graph of the signum function is given by the Fig 2.14.

(vii) Greatest integer function

The function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = [x], x \in \mathbf{R}$ assumes the value of the greatest integer, less than or equal to x. Such a function is called the *greatest integer function*.

From the definition of [*x*], we can see that

[x] = -1 for $-1 \le x < 0$ [x] = 0 for $0 \le x < 1$ [x] = 1 for $1 \le x < 2$ [x] = 2 for $2 \le x < 3$ an and so on. The graph of the function is

shown in Fig 2.15.

BEST OF LUCK 🎯

Example 22 The function *f* is defined by

$$f(x) = \begin{cases} 1-x, \ x < 0\\ 1, \ x = 0\\ x+1, \ x > 0 \end{cases}$$

Draw the graph of f(x). **Solution** Here, f(x) = 1 - x, x < 0, this gives f(-4) = 1 - (-4) = 5;f(-3) = 1 - (-3) = 4, f(-2) = 1 - (-2) = 3f(-1) = 1 - (-1) = 2; etc, and f(1) = 2, f(2) = 3, f(3) = 4f(4) = 5 and so on for f(x) = x + 1, x > 0. Thus, the graph of f is as shown in Fig 2.17

SOME MORE GRAPHS

Shift towards Left

Shift towards +ve y- axis

PYQ AND EXPECTED QUESTION

1. The function f is defined by

(IMP-2012)

 $f(x) = \begin{cases} 2-x, & x < 0\\ 2, & x = 0\\ 2+x, & x > 0 \end{cases}$

Draw the graph of Find f(x)

ANS:

2.

i) If $A = \{2,4\}$, $B = \{1,3,5\}$. Then the number of relations from A to B is (IMP-2013) ii) If $P=\{-1,1\}$, form the set P x P x P

ANS:

i) number of relations from A to B $2^{2 \times 3} = 2^6 = 64$ ii) P x P = {-1,1} x {-1,1} - {(-1,-1),(-1,1), (1-1), (1,1)} P x P x P={(-1,-1), (-1,1), (1,-1),(1,1)} x {-1,1} = {(-1,-1,-1),(-1-1,1),(-1,1,-1), (1,-1,-1), (1,-1,1), (1,1-1), (1,1,1)}

MATHEMATICS FOCUS AREA +1 NOTES @ <u>sivasekharoo7r@gmail.com</u> BEST OF LUCK @

3. Consider the function f : R → R defined by f(x) = -|x|
i) Find the domain and range of f.
ii) Draw the graph of f.

4. Match the following

(IMP-2015)

(IMP-2013)

ANS:

- 1- Identity function, $f: R \rightarrow R : f(x) = x$
- 2- Modulus function, $f : R \rightarrow R : f(x) = |x|$
- $3 \text{Signum function } f : R \rightarrow R$

5. The figure shows the graph of a function f(x) which is a semi-circle centred at origin MARCH 2018

a) Write the domain and range of f(x)

b) Define the function f(x).

ANS: Domain = [-4,4] (x-axis) Range = [0,4] (y-axis) $x^{2}+y^{2}=16$ $y^{2} = 16 - x^{2}$ $y = \sqrt{16 - x^{2}} = f(x)$