2. RELATIONS AND FUNCTIONS

Relations

A relation R from a non-empty set A to a non-empty set B is a subset of the cartesian product $\mathrm{A} \times \mathrm{B}$. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $\mathrm{A} \times \mathrm{B}$. The second element is called the image of the first element

The set of all first elements of the ordered pairs in a relation R from a set A to a set B is called the domain of the relation R .

The set of all second elements in a relation R from a set A to a set B is called the range of the relation R . The whole set B is called the codomain of the relation R . Note that range \subset codomain.
Remarks
i. A relation may be represented algebraically either by the Roster method or by the Set-builder method.
ii. An arrow diagram is a visual representation of a relation

Example 7 Let A $=\{1,2,3,4,5,6\}$. Define a relation R from A to A by

$$
\mathrm{R}=\{(x, y): y=x+1\}
$$

(i) Depict this relation using an arrow diagram.
(ii) Write down the domain, codomain and range of R.

Solution (i) By the definition of the relation,
$R=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$.
The corresponding arrow diagram is
(ii) We can see that the domain $=\{1,2,3,4,5$, $\}$

Similarly, the range $=\{2,3,4,5,6\}$ and the codomain $=\{1,2,3,4,5,6\}$.

Fig 2.5

Fig 2.6

Example 8 The Fig 2.6 shows a relation between the sets P and Q . Write this relation (i) in set-builder form, (ii) in roster form. What is its domain and range? Solution It is obvious that the relation R is " x is the square of y ".
(i) In set-builder form, $\mathrm{R}=\{(x, y)$: x is the square of $y, x \in \mathrm{P}, y \in \mathbf{Q}\}$
(ii) In roster form, $\mathrm{R}=\{(9,3),(9,-3),(4,2),(4,-2),(25,5),(25,-5)\}$

The domain of this relation is $\{4,9,25\}$.
The range of this relation is $\{-2,2,-3,3,-5,5\}$.
Note that the element 1 is not related to any element in set P .
The set Q is the codomain of this relation.
NOTE: The total number of relations that can be defined from a set A to a set B is the number of possible subsets of $\mathrm{A} \times \mathrm{B}$. If $n(\mathrm{~A})=p$ and $n(\mathrm{~B})=q$, then $n(\mathrm{~A} \times \mathrm{B})=p q$ and the total number of relations is $2^{p q}$.

Example 9 Let $A=\{1,2\}$ and $B=\{3,4\}$. Find the number of relations from A to B.
Solution We have,
$A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$. Since $n(A \times B)=4$, the number of subsets of $A \times B$ is 24 . Therefore, the number of relations from A into B will be 24 .
Remark A relation R from A to A is also stated as a relation on A .
Example 10
Let $\mathrm{A}=\{1,2,3, \ldots, 14\}$. Define a relation R from A to A by $\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in \mathrm{~A}\}$. Write down its domain, codomain and range.
Solution
The relation R from A to A is given as $\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in \mathrm{~A}\}$ i.e., $\mathrm{R}=\{(x, y): 3 x=y$, where $x, y \in \mathrm{~A}\}$
$\therefore \mathrm{R}=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of R is the set of all first elements of the ordered pairs in the relation.
\therefore Domain of $\mathrm{R}=\{1,2,3,4\}$
The whole set A is the codomain of the relation R .
\therefore Codomain of $\mathrm{R}=\mathrm{A}=\{1,2,3 \ldots 14\}$
The range of R is the set of all second elements of the ordered pairs in the relation.
\therefore Range of $\mathrm{R}=\{3,6,9,12\}$
Example 11
$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R from A to B by
$\mathrm{R}=\{(x, y)$: the difference between x and y is odd; $x \in \mathrm{~A}, y \in \mathrm{~B}\}$. Write R in roster form.
Solution
$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
$\mathrm{R}=\{(x, y)$: the difference between x and y is odd; $x \in \mathrm{~A}, y \in \mathrm{~B}\}$
$\therefore \mathrm{R}=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$

Example 12 The Fig2.7 shows a relationship between the sets P and Q. Write this relation (i) in set-builder form (ii) roster form. What is its domain and range?

Fig 2.7
According to the given figure, $\mathrm{P}=\{5,6,7\}, \mathrm{Q}=\{3,4,5\}$
(i) $\mathrm{R}=\{(x, y): y=x-2 ; x \in \mathrm{P}\}$ or $\mathrm{R}=\{(x, y): y=x-2$ for $x=5,6,7\}$
(ii) $\mathrm{R}=\{(5,3),(6,4),(7,5)\}$

Domain of $R=\{5,6,7\}$
Range of $R=\{3,4,5\}$
Example 13 Let $\mathrm{A}=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(a, b): a, b \in \mathrm{~A}, b$ is exactly divisible by $a\}$.
(i) Write R in roster form
(ii) Find the domain of R
(iii) Find the range of R.

Solution
$\mathrm{A}=\{1,2,3,4,6\}, \mathrm{R}=\{(a, b): a, b \in \mathrm{~A}, b$ is exactly divisible by $a\}$
(i) $\quad \mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6)$, $(4,4),(6,6)\}$
(ii) Domain of $\mathrm{R}=\{1,2,3,4,6\}$
(iii) Range of $\mathrm{R}=\{1,2,3,4,6\}$

Example 14 Write the relation $\mathrm{R}=\{(x, x 3): x$ is a prime number less than 10$\}$ in roster form
Solution
$\mathrm{R}=\{(x, x 3)$: x is a prime number less than 10$\}$ The prime numbers less than 10 are $2,3,5$, and 7 .
$\therefore \mathrm{R}=\{(2,8),(3,27),(5,125),(7,343)\}$

Some functions and their graphs

(i) Identity function Let \mathbf{R} be the set of real numbers. Define the real valued function $f: \mathbf{R} \rightarrow \mathbf{R}$ by $y=f(x)=x$ for each $x \in \mathbf{R}$. Such a function is called the identity function. Here the domain and range of f are \mathbf{R}. The graph is a straight line as shown in Fig 2.8. It passes through the origin.

Fig 2.8
(ii) Constant function Define the function $f: \mathbf{R} \rightarrow \mathbf{R}$ by $y=f(x)=c, x \in \mathbf{R}$ where c is a constant and each $x \in \mathbf{R}$. Here domain of f is \mathbf{R} and its range is $\{c\}$.

Fig 2.9
(iii) Polynomial function Define the function $f: \mathbf{R} \rightarrow \mathbf{R}$ by $y=f(x)=x^{2}, x \in \mathbf{R}$. Domain of $f=\{x: x \in \mathbf{R}\}$. Range of $f=\left\{x^{2}: x \in \mathbf{R}\right\}$. The graph of f is given by Fig 2.10

(iv) the graph of the function $\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{3}, x \in \mathbf{R}$.

Fig 2.11

Rational functions

Define the real valued function $f: \mathbf{R}-\{0\} \rightarrow \mathbf{R}$ defined by $1 f(x)=\frac{1}{x}$, $x \in \mathbf{R}-\{0\}$. The domain is all real numbers except 0 and its range is also all real numbers except 0 . The graph of f is given in Fig 2.12.

$f(x)=\frac{1}{x}$
Fig 2.12
(v) The Modulus function The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=|x|$ for each x $\in \mathbf{R}$ is called modulus function. For each non-negative value of $x, f(x)$ is equal to
x. But for negative values of x, the value of $f(x)$ is the negative of the value of x, i.e., $f(x)=\left\{\begin{array}{c}x, x \geq 0 \\ -x, x<0\end{array}\right\}$

The graph of the modulus function is given in Fig 2.13

Fig 2.13
vi) Signum function The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
f(x)=\left\{\begin{array}{ll}
1, & \text { if } x>0 \\
0, & \text { if } x=0 \\
-1, & \text { if } x>0
\end{array}\right\}
$$

is called the signum function. The domain of the signum function is \mathbf{R} and the range is the set $\{-1,0,1\}$. The graph of the signum function is given by the Fig 2.14 .

Fig 2.14
(vii) Greatest integer function

The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=[x], x \in \mathbf{R}$ assumes the value of the greatest integer, less than or equal to x. Such a function is called the greatest integer function.
From the definition of $[x]$, we can see that
$[x]=-1$ for $-1 \leq x<0$
$[x]=0$ for $0 \leq x<1$
$[x]=1$ for $1 \leq x<2$
$[x]=2$ for $2 \leq x<3$ an and so on.
The graph of the function is shown in Fig 2.15.

Example 22 The function f is defined by

$$
f(x)= \begin{cases}1-x, & x<0 \\ 1 & , x=0 \\ x+1, & x>0\end{cases}
$$

Draw the graph of $f(x)$.
Solution Here, $f(x)=1-x, x<0$, this gives
$f(-4)=1-(-4)=5$;
$f(-3)=1-(-3)=4$,
$f(-2)=1-(-2)=3$
$f(-1)=1-(-1)=2$; etc,
and $f(1)=2, f(2)=3, f(3)=4$
$f(4)=5$ and so on for $f(x)=x+1, x>0$.
Thus, the graph of f is as shown in Fig 2.17

SOME MORE GRAPHS

Shift towards Left

Shift towards Right

Shift towards + ve y-axis

Shift towards -ve y-axis

PYQ AND EXPECTED QUESTION

1. The function f is defined by

$$
f(x)= \begin{cases}2-x, & x<0 \\ 2, & x=0 \\ 2+x, & x>0\end{cases}
$$

Draw the graph of Find $f(x)$

ANS:

For $\mathrm{x}<0$

x	-1	-2
$2-x$	3	4

$$
\text { For } x>0
$$

x	1	2
$2+x$	3	4

2.
i) If $A=\{2,4\}, B=\{1,3,5\}$. Then the number of relations from A to B is
ii) If $\mathrm{P}=\{-1,1\}$, form the set $\mathrm{P} \times \mathrm{P} \times \mathrm{P}$

ANS:

i) number of relations from A to $B 2^{2 \times 3}=2^{6}=64$
ii) $\mathrm{P} \times \mathrm{P}=\{-1,1\} \times\{-1,1\}-\{(-1,-1),(-1,1),(1-1),(1,1)\}$
$\mathrm{P} \times \mathrm{P} \times \mathrm{P}=\{(-1,-1),(-1,1),(1,-1),(1,1)\} \times\{-1,1\}$
$=\{(-1,-1,-1),(-1-1,1),(-1,1,-1),(-1,1,1),(1,-1,-1),(1,-1,1),(1,1-1),(1,1,1)\}$
3. Consider the function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $\mathrm{f}(\mathrm{x})=-|\mathrm{x}|$
i) Find the domain and range of f.
ii) Draw the graph of f.

ANS:
i) Domain $=\mathrm{R} ;$ Range $=(-\propto, 0]$
ii)

4. Match the following
(IMP-2015)

	Modulus function. $f: R \rightarrow R ; f(x)=\|x\|$
	Signum function $\begin{array}{r} f: R \rightarrow R \\ f(x)= \begin{cases}\frac{\|x\|}{x}, & x \neq 0 \\ 0, & x=0\end{cases} \end{array}$
	Identity function $f: R \rightarrow R ; f(x)=x$
.	Greatest integer function. $f: R \rightarrow R f(x)=[x]$

ANS:
1- Identity function, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}: \mathrm{f}(\mathrm{x})=\mathrm{x}$
2- Modulus function, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}: \mathrm{f}(\mathrm{x})=|\mathrm{x}|$
3 - Signum function $f: R \rightarrow R$

MATHEMATICS FOCUS AREA + 1 NOTES @ sivasekharoo7r@gmail.com BEST OF LUCK (3)

5. The figure shows the graph of a function $f(x)$ which is a semi-circle centred at origin

MARCH 2018

a) Write the domain and range of $f(x)$
b) Define the function $f(x)$.

ANS:
Domain $=[-4,4]$ (x-axis)
Range $=[0,4]$ (y-axis)
$x^{2}+y^{2}=16$
$y^{2}=16-x^{2}$
$y=\sqrt{16-x^{2}}=f(x)$

