SET - 3

Series: GBM/1

कोड नं. Code No. 65/1/3

<u></u>				
रोल न.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 8 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 29 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 8 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **29** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित

MATHEMATICS

निर्धारित समय : 3 घण्टे अधिकतम अंक : 100 Time allowed : 3 hours Maximum Marks : 100

सामान्य निर्देश :

- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न-पत्र में **29** प्रश्न हैं।
- (iii) खण्ड **अ** के प्रश्न **1 4** तक अति लघू-उत्तर वाले प्रश्न हैं और प्रत्येक प्रश्न के लिए **1** अंक निर्धारित है ।
- (iv) खण्ड **ब** के प्रश्न **5 1**2 तक लघ्-उत्तर प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए **2** अंक निर्धारित हैं ।
- (v) खण्ड **स** के प्रश्न 13 23 तक दीर्घ-उत्तर I प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए 4 अंक निर्धारित हैं।
- (vi) खण्ड **द** के प्रश्न **24 29** तक दीर्घ-उत्तर **II** प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए **6** अंक निर्धारित हैं ।

65/1/3 1 [P.T.O.

General Instructions:

- All questions are compulsory. *(i)*
- This question paper contains 29 questions. (ii)
- (iii) Questions 1-4 in Section A are very short-answer type questions carrying 1 mark each.
- (iv) Questions 5-12 in Section B are short-answer type questions carrying 2 marks each.
- Questions 13-23 in Section C are long-answer I type questions carrying 4 marks each.
- (vi) Questions 24-29 in Section D are long-answer II type questions carrying 6 marks each.

खण्ड – अ SECTION - A

प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है। Question numbers 1 to 4 carry 1 mark each.

यदि एक रेखा x तथा y अक्षों की धनात्मक दिशा के साथ क्रमश: 90° तथा 60° के कोण बनाती है, तो ज्ञात 1. कीजिए वह z-अक्ष की धनात्मक दिशा के साथ कितना कोण बनाती है ।

If a line makes angles 90° and 60° respectively with the positive directions of x and yaxes, find the angle which it makes with the positive direction of z-axis.

मान ज्ञात कीजिए : $\int_{2}^{3} 3^{x} dx$ Evaluate : $\int_{2}^{3} 3^{x} dx$.

3.

अचर 'k' का मान ज्ञात कीजिए तांकि फलन $f(x) = \begin{cases} \frac{kx}{|x|}, & \text{यदि } x < 0 \\ 3, & \text{यदि } x \geq 0 \end{cases}$ Determine the value of the constant 'k' so that the function $f(x) = \begin{cases} \frac{kx}{|x|}, & \text{if } x < 0 \\ 3, & \text{if } x \geq 0 \end{cases}$ is continuous at x = 0.

यदि A, 3×3 का व्यत्क्रमणीय आव्यह है, तो k का मान क्या होगा यदि $\det(A^{-1}) = (\det A)^k$ है । 4. If A is a 3×3 invertible matrix, then what will be the value of k if $det(A^{-1}) = (det A)^k$.

65/1/3

खण्ड – ਕ SECTION – B

प्रश्न संख्या 5 से 12 तक प्रत्येक प्रश्न 2 अंक का है। Question numbers 5 to 12 carry 2 marks each.

- 5. सिद्ध कीजिए कि यदि E तथा F स्वतंत्र घटनाएँ है तो घटनाएँ E तथा F' भी स्वतंत्र घटनाएँ है ।
 Prove that if E and F are independent events, then the events E and F' are also independent.
- 6. एक छोटी फर्म नैकलेस तथा ब्रेसलैट बनाती है । यह प्रतिदिन नैकलेस तथा ब्रेसलैट मिलाकर अधिक से अधिक 24 नग बना सकती है । एक ब्रेसलैट को बनाने में एक घंटा तथा एक नैकलेस बनाने में 2 घंटा समय लगता है । एक दिन में अधिक से अधिक 16 घंटा समय उपलब्ध है । एक नैकलेस पर ₹ 100 लाभ तथा एक ब्रेसलैट पर ₹ 300 लाभ है । फर्म एक दिन में कितने-िकतने प्रत्येक प्रकार के नग बनाए कि लाभ अधिकतम हो यह जानने के लिए इसे रैखिक प्रोग्रामन समस्या में बदलें । यह दिया है प्रत्येक का एक-एक नग अवश्य बने ।

A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is ₹ 100 and that on a bracelet is ₹ 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit? It is being given that at least one of each must be produced.

- 7. ज्ञात कोजिए : $\int \frac{dx}{x^2 + 4x + 8}$ Find $\int \frac{dx}{x^2 + 4x + 8}$
- 8. उस रेखा का सिंदश समीकरण ज्ञात कीजिए जो बिंदु A(1, 2, -1) से होकर जाती है तथा रेखा 5x-25=14-7y=35z के समांतर है । Find the vector equation of the line passing through the point A(1, 2, -1) and parallel to the line 5x-25=14-7y=35z.
- 9. दर्शाइए कि फलन $f(x) = 4x^3 18x^2 + 27x 7$ IR पर सदैव वर्धमान है । Show that the function $f(x) = 4x^3 18x^2 + 27x 7$ is always increasing on IR.
- 10. एक गोले का आयतन 3 घन सेमी/सै. की दर से बढ़ रहा है । जब गोले की त्रिज्या 2 सेमी है, तो उसके पृष्ठीय क्षेत्रफल के बढ़ने की दर ज्ञात कीजिए ।

 The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find

The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm.

11. दर्शाइए कि एक विषम समित आव्यूह के विकर्ण के सभी अवयव शून्य हैं। Show that all the diagonal elements of a skew symmetric matrix are zero.

12. यदि
$$y = \sin^{-1}(6x\sqrt{1-9x^2}), -\frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}$$
 है, तो $\frac{dy}{dx}$ ज्ञात कीजिए । If $y = \sin^{-1}(6x\sqrt{1-9x^2}), -\frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}$, then find $\frac{dy}{dx}$.

खण्ड – स SECTION – C

प्रश्न संख्या 13 से 23 तक प्रत्येक प्रश्न 4 अंक का है। Question numbers 13 to 23 carry 4 marks each.

- 13. माना $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i}$ तथा $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ है, तो
 - (a) माना $c_1=1$ तथा $c_2=2$ है, तो c_3 ज्ञात कीजिए जो \overrightarrow{a} , \overrightarrow{b} तथा \overrightarrow{c} को सहतलीय बनाएँ ।
 - (b) यदि $c_2=-1$ तथा $c_3=1$ है तो दर्शाइए कि c_1 का कोई भी मान \overrightarrow{a} , \overrightarrow{b} तथा \overrightarrow{c} को सहतलीय नहीं बना सकता ।

Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$, then

- (a) Let $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \vec{a} , \vec{b} and \vec{c} coplanar.
- (b) If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \vec{a} , \vec{b} and \vec{c} coplanar.
- 14. यदि \vec{a} , \vec{b} तथा \vec{c} समान परिमाण वाले तीन सदिश परस्पर लंबवत है । दर्शाइए कि सदिश \vec{a} + \vec{b} + \vec{c} सदिशों \vec{a} , \vec{b} तथा \vec{c} प्रत्येक पर समान रूप से झुका है । \vec{a} + \vec{b} + \vec{c} , जो कोण \vec{a} अथवा \vec{b} अथवा \vec{c} के साथ बनाता है, वह भी ज्ञात कीजिए ।

If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} . Also, find the angle which $\vec{a} + \vec{b} + \vec{c}$ makes with \vec{a} or \vec{b} or \vec{c} .

- 15. यादृच्छिक चर X, केवल 0, 1, 2, 3 के मान ले सकता है । दिया है कि P(X=0)=P(X=1)=p तथा P(X=2)=P(X=3) ऐसे हैं कि $\Sigma p_i \, x_i^2=2\Sigma p_i x_i$ है, तो p का मान ज्ञात कीजिए । The random variable X can take only the values 0, 1, 2, 3. Given that P(X=0)=P(X=1)=p and P(X=2)=P(X=3) such that $\Sigma p_i \, x_i^2=2\Sigma p_i x_i$, find the value of p.
- 16. प्राय: यह माना जाता है कि एक सत्यवादी मनुष्य समाज में अधिक आदर पाता है । एक व्यक्ति के विषय में ज्ञात है कि वह 5 बार में से 4 बार सत्य बोलता है । वह एक पासा फेंकता है तथा कहता हैं कि छ: आया है । प्रायिकता ज्ञात कीजिए कि सचम्च में 6 आया है ।

क्या आप सहमत है कि सत्य कथन कहने वाला समाज में अधिक आदर पाता है ?

Often it is taken that a truthful person commands, more respect in the society. A man is known to speak the truth 4 out of 5 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

Do you also agree that the value of truthfulness leads to more respect in the society?

65/1/3

17. सारिणकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए कि
$$\begin{vmatrix} x & x+y & x+2y \\ x+2y & x & x+y \\ x+y & x+2y & x \end{vmatrix} = 9y^2(x+y).$$

अथवा

माना
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$, एक आव्यूह D ज्ञात कीजिए कि $CD - AB = O$.

Using properties of determinants, prove that
$$\begin{vmatrix} x & x+y & x+2y \\ x+2y & x & x+y \\ x+y & x+2y & x \end{vmatrix} = 9y^2(x+y).$$

OR

Let
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$, find a matrix D such that $CD - AB = O$.

 $18. \quad$ फलन $(\sin x)^x + \sin^{-1} \sqrt{x}$ का x के सापेक्ष, अवकलन कीजिए ।

अथवा

यदि
$$x^{m} y^{n} = (x + y)^{m+n}$$
 है, तो सिद्ध कीजिए कि $\frac{d^{2}y}{dx^{2}} = 0$.

Differentiate the function $(\sin x)^x + \sin^{-1} \sqrt{x}$ with respect to x.

OR

If
$$x^m y^n = (x + y)^{m+n}$$
, prove that $\frac{d^2y}{dx^2} = 0$.

19. मान ज्ञात कोजिए :
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$

अथवा

मान ज्ञात कीजिए :
$$\int_{0}^{3/2} |x \sin \pi x| dx$$

Evaluate:
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$

OR

Evaluate:
$$\int_{0}^{3/2} |x \sin \pi x| dx$$

20. निम्न रैखिक प्रोग्रामन समस्या को आलेख द्वारा हल कीजिए:

Z = 20x + 10y का निम्न व्यवरोधों के अंतर्गत अधिकतमीकरण कीजिए :

$$x + 2y \le 28,$$

$$3x + y \le 24,$$

$$x \ge 2$$
,

$$x, y \ge 0$$

Solve the following L.P.P. graphically:

$$Z = 20x + 10y$$

Subject to the following constraints

$$x + 2y \le 28,$$

$$3x + y \le 24,$$

$$x \ge 2$$
,

$$x, y \ge 0$$

21. दर्शाइए कि वक्रों का कुल जिसके लिए $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + y^2}{2xy}$ है, $x^2 - y^2 = cx$ द्वारा प्रदत्त है ।

Show that the family of curves for which $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$, is given by $x^2 - y^2 = cx$.

22. ज्ञात कीजिए : $\int \frac{(3 \sin x - 2) \cos x}{13 - \cos^2 x - 7 \sin x} dx$

Find:
$$\int \frac{(3\sin x - 2)\cos x}{13 - \cos^2 x - 7\sin x} dx$$

23. निम्न समीकरण को x के लिए हल कीजिए :

Solve the following equation for x:

$$\cos(\tan^{-1} x) = \sin\left(\cot^{-1} \frac{3}{4}\right)$$

खण्ड – द

SECTION - D

प्रश्न संख्या **24** से **29** तक प्रत्येक प्रश्न **6** अंक का है । Question numbers **24** to **29** carry **6** marks each.

Question numbers 24 to 27 carry 6 marks each.

24. समाकलनों के प्रयोग से उस त्रिभुज द्वारा घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (-2, 1), (0, 4) तथा (2, 3) हैं ।

अथवा

समाकलनों के प्रयोग से वृत्त $x^2+y^2=16$ तथा रेखा $\sqrt{3}y=x$ द्वारा प्रथम चतुर्थांश में घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए ।

Using integration, find the area of region bounded by the triangle whose vertices are (-2, 1), (0, 4) and (2, 3).

OR

Find the area bounded by the circle $x^2 + y^2 = 16$ and the line $\sqrt{3}y = x$ in the first quadrant, using integration.

25. उस समतल का समीकरण ज्ञात कीजिए जो समतलों $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 4\hat{k}) = 1$ तथा $\vec{r} \cdot (\hat{i} - \hat{j}) + 4 = 0$ की प्रतिच्छेदन रेखा से होकर जाता है तथा समतल $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 8 = 0$ पर लंबवत है । अत: ज्ञात कीजिए कि क्या उपरोक्त प्राप्त समतल में रेखा x - 1 = 2y - 4 = 3z - 12 अंतर्विष्ट है ।

अथवा

उस रेखा का कार्तीय तथा सिदश समीकरण ज्ञात कीजिए जो बिंदु (1, 2, -4) से होकर जाती है तथा रेखाओं $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ तथा $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ पर लंबवत है ।

Find the equation of the plane through the line of intersection of $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 4\hat{k}) = 1$ and $\vec{r} \cdot (\hat{i} - \hat{j}) + 4 = 0$ and perpendicular to the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 8 = 0$. Hence find whether the plane thus obtained contains the line x - 1 = 2y - 4 = 3z - 12.

OR

Find the vector and Cartesian equations of a line passing through (1, 2, -4) and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$

26. फलन $f: \mathbb{R}_+ \to [-5, \infty)$, जो $f(x) = 9x^2 + 6x - 5$ द्वारा प्रदत्त है पर विचार कीजिए । दर्शाइए कि f व्युत्क्रमणीय है तथा $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$

अत: ज्ञात कीजिए

- (i) $f^{-1}(10)$
- (ii) y = 4/3,

जहाँ \mathbb{R}_+ सभी ऋणेत्तर वास्तविक संख्याओं का समुच्चय है ।

अथवा

द्विआधारी संक्रिया * जो $A=Q-\{1\}$ पर सभी $a,b\in A$ के लिए नियम a*b=a-b+ab द्वारा परिभाषित है के क्रम विनिमेय तथा साहचारी होने पर चर्चा कीजिए । * का A में तत्समक अवयव ज्ञात कीजिए । अत: A के व्युत्क्रमणीय अवयव ज्ञात कीजिए ।

Consider $f : \mathbb{R}_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with

$$f^{-1}(y) = \left(\frac{\sqrt{y+6} - 1}{3}\right).$$

Hence Find

(i) $f^{-1}(10)$

(ii)
$$y \text{ if } f^{-1}(y) = \frac{4}{3},$$

where \mathbb{R}_{+} is the set of all non-negative real numbers.

OR

Discuss the commutativity and associativity of binary operation '*' defined on $A = Q - \{1\}$ by the rule a * b = a - b + ab for all $a, b \in A$. Also find the identity element of * in A and hence find the invertible elements of A.

27. यदि एक समकोण त्रिभुज के कर्ण तथा एक भुजा का योग दिया है, तो दर्शाइए कि त्रिभुज का क्षेत्रफल अधिकतम होगा जब उनके बीच का कोण $\frac{\pi}{3}$ है ।

If the sum of lengths of the hypotenuse and a side of a right angled triangle is given, show that the area of the triangle is maximum, when the angle between them is $\frac{\pi}{3}$.

28. यदि
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & -1 \end{pmatrix}$$
 है, तो A^{-1} ज्ञात कीजिए, अत: समीकरण निकाय $2x + y - 3z = 13$,

$$3x + 2y + z = 4$$
, $x + 2y - z = 8$ का हल ज्ञात कीजिए ।

If
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & -1 \end{pmatrix}$$
, find A^{-1} and hence solve the system of equations $2x + y - 3z = 13$,

$$3x + 2y + z = 4$$
, $x + 2y - z = 8$.

29. अवकल समीकरण $\tan x \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = 2x \tan x + x^2 - y$; $(\tan x \neq 0)$ का विशिष्ट हल ज्ञात कीजिए, दिया है

िक
$$y = 0$$
 है जब $x = \frac{\pi}{2}$ है ।

Find the particular solution of the differential equation

$$\tan x \cdot \frac{dy}{dx} = 2x \tan x + x^2 - y$$
; $(\tan x \neq 0)$ given that $y = 0$ when $x = \frac{\pi}{2}$.

65/1/3