- Q) According to Newton's formula, the speed of sound in air at STP is: (Take the mass of 1 mole of are is $29 \times 10^{-3}~kg$)
- Ans) 1 mole of any gas occupies 22.4 liters at STP.

Therefore, the density of air at STP is $\rho = \frac{\text{Mass of one mole of air}}{\text{Volume of one mole of air at STP}}$

$$= \frac{29 \times 10^{-3} \ kg}{22.4 \times 10^{-3} \ m^3} = 1.29 \ kg \ m^{-3}$$

At STP,

$$P=1~atm=1.01 \times 10^5~N~m^{-2}$$

$$V = \sqrt{\left(rac{P}{
ho}
ight)} = \sqrt{rac{1.01 \times 10^5 \ N \ m^{-2}}{1.29 \times kg \ m^{-3}}} = 280 \ m \ s^{-1}$$