A transverse harmonic wave on a string is described by

$$y(x,t)=3.0sin(36t+0.018x+\pi/4)$$
 where x and y are in cm and t in s. The positive direction of x is from left to

(a) Is this a travelling wave or a stationary wave?

right.

If it is travelling what are the speed and direction of its propagation?

- (b) What are its amplitude and frequency?
- (c) What is the initial phase at the origin?
- (d) What is the least distance between two successive crests in the wave?
- Ans) (a) The equation of progressive wave travelling from right to left is given by the displacement function:

$$y(x,t) = a \sin(\omega t + k x + \phi)$$
 ... (i)

The given equation is:

$$y(x,t) = 3.0 \, sin(36t + 0.018x + rac{\pi}{4})$$
 ...(ii)

On comparing both the equations, we find that equation (ii) represents a travelling wave, propgating from right to left.

Now using equations (i) and (ii), we can write:

$$\omega=36$$
 rad/s and $k=$ 0.018 m^{-1}

We know that:

$$v=\omega/2\pi$$
 and $\lambda=2\pi/k$

Also,
$$v=f\lambda$$
 $\therefore v=(\omega/2\pi) imes(2\pi/k)=\omega/k$

- $=36/0.018=2000\,cm/s=20\,m/s$ Hence, the speed of the given travelling wave is 20 m/s.
- (b) Amplitude of the given wave, $a=3\,cm$ Frequency of the given wave: $f=\omega/2\pi=36/2 imes3.14=573Hz$
- (c) On comparing equations (i) and (ii), we find that the intial phase angle, $\phi=\pi/4$
- (d) The distance between two successive crests (or troughs) is equal to the wavelength of the wave.

Wavelength is given by the relation: $k=2\pi/\lambda$

$$\lambda = 2\pi/k = 2 \times 3.14/0.018 = 348.89 \, cm = 3.49 \, m$$