

Total No. of Questions – 24 Total No. of Printed Pages – 3

Part – III MATHEMATICS, Paper-II(B) (English Version)

Time : 3 Hours]

[Max. Marks: 75

Note : This question paper consists of three sections A, B and C.

 $10 \times 2 = 20$

- I. Very short answer type questions :
 - (i) Attempt all questions.
 - (ii) Each question carries two marks.
 - 1. Find the other end of the diameter of the circle $x^2 + y^2 8x 8y + 27$ = 0 if one end of it is (2, 3).
 - 2. Define chord of contact and find the chord of contact of (1, 1) to the circle $x^2 + y^2 = 9$.
 - 3. Find k if the circles $x^2 + y^2 5x 14y 34 = 0$ and $x^2 + y^2 + 2x + 4y + k = 0$ are orthogonal.
 - Find the equation of the parabola whose vertex is (3, -2) and focus is (3, 1).
 - 5. If 3x 4y + k = 0 is a tangent to the hyperbola $x^2 4y^2 = 5$, find the value of k.

6. Evaluate :
$$\int \frac{\cos x}{(1+\sin x)^2} \, \mathrm{d}x.$$

[1 of 4]

7. Evaluate : $\int x \log x \, dx$ on $(0, \infty)$.

8. Evaluate :
$$\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots + n^4}{n^5}$$

- 9. Find : $\int_{-\pi/2}^{\pi/2} \sin^2 x \cos^4 x \, dx.$
- 10. Solve : y(1 + x) dx + x (1 + y) dy = 0.

SECTION – B $5 \times 4 = 20$

- **II.** Short answer type questions :
 - (i) Attempt any five questions.
 - (ii) Each question carries four marks.
 - 11. Find the area of the triangle formed by the tangent at $P(x_1, y_1)$ to the circle $x^2 + y^2 = a^2$ with the co-ordinate axes where $x, y, \neq 0$.
 - 12. If the two circles $x^2 + y^2 + 2gx + 2fy = 0$ and $x^2 + y^2 + 2g'x + 2fy = 0$ touch each other then show that f'g = fg'.
 - S and T are the foci of an ellipse and B is one end of the minor axis. If STB is an equilateral triangle, then find the eccentricity of the ellipse.
 - 14. Find the condition for the line

 $x \cos \alpha + y \sin \alpha = P$ to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- 15. Find the centre, foci, eccentricity, equation of the directrices of the hyperbola $x^2 4y^2 = 4$.
- 16. Find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 17. Solve : $(x^2 + y^2)dx = 2xy dy$. [2 of 4]

293

- III. Long answer type questions :
 - (i) Attempt any five questions.
 - (ii) Each question carries seven marks.
 - 18. Find the equation of the circle which passes through (4, 1), (6, 5) and having the centre on 4x + 3y 24 = 0.
 - 19. Find the equation of the circle which touches the circle $x^2 + y^2 2x 4y 20 = 0$ externally at (5, 5) with radius 5.
 - 20. From an external point P tangents are drawn to the parabola $y^2 = 4ax$ and these tangents make angles θ_1 , θ_2 with its axis, such that $\tan \theta_1 + \tan \theta_2$ is a constant b. Then show that P lies on the line y = bx.

21. Evaluate :
$$\int \frac{1}{1 + \sin x + \cos x} \, \mathrm{d}x.$$

 $\pi/2$

22. If $I_n = \int \cos^n x \, dx$, then show that $I_n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} I_{n-2}$. (where $n \ge 2$)

23. Show that :
$$\int_{0}^{\pi} \frac{x}{\sin x + \cos x} \, \mathrm{d}x = \frac{\pi}{2\sqrt{2}} \log (\sqrt{2} + 1).$$

24. Solve :
$$x \log x \frac{dy}{dx} + y = 2 \log x$$
.