VOLUMETRIC ANALYSIS

Equivalent weights of some acids and bases

Acid/Base	Equivalent wt.
Hydrochloric acid (HCl)	36.5
Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	49
Nitric acid $\left(\mathrm{HNO}_{3}\right)$	63
Oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right)$	63
Sodium hydroxide (NaOH)	40
Potassium hydroxide (KOH)	56
Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$	53
Potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$	69

ALKALIMETRY

1. Estimation of Sodium hydroxide using std. HCl

Aim: Determine the mass of sodium hydroxide in the whole of the given solution. You are supplied with a standard solution of HCl containing $3.7 \mathrm{~g} / \mathrm{L}$.

Principle

$$
\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Procedure

The given NaOH solution is made upto 100 mL in a clean standard flask. 20 mL of the made up solution (NaOH) is pipetted out into a clean conical flask. Add one or two drops phenolphthalein indicator and titrated against Std. HCl from the burette. At the end point the pink colour changes to colourless. The experiment is repeated to get concordant values.

Observations

SI. No.	Volume of NaOH in mL	Burette Reading		Volume of HCl in mL
		Initial	Final	
1.	20	0		
2.	20	0		
3.	20	0		

Calculations:

Mass per litre of $\mathrm{HCl}=3.7 \mathrm{~g} / \mathrm{L}$
Equivalent mass of $\mathrm{HCl}=36.5$
Normality of $\mathrm{HCl}, \mathrm{N}_{1}=\frac{\text { Mass per litre }}{\text { Equivalent mass }}=\frac{3.7}{36.5}=0.1014 \mathrm{~N}$
Volume of $\mathrm{HCl}\left(\mathrm{V}_{1}\right)=$ \qquad mL
Volume of NaOH solution pipetted out, $\mathrm{V}_{2}=20 \mathrm{~mL}$
Normality of $\mathrm{NaOH}\left(\mathrm{N}_{2}\right)=$?
From normality equation, $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$,
$\mathrm{N}_{2}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{0.1014 \times \ldots \ldots . .}{20}=$ \qquad N

Equivalent mass of $\mathrm{NaOH}=40$
Mass per litre of NaOH solution $=$ Normality \times Equivalent mass $=$ \qquad $x 40=$ \qquad g/L
The mass of NaOH in the whole of the given solution $=$ Mass per litre $\times 100$

$$
=\frac{\text { Mass per litre }}{10}=\frac{.}{10}=. .
$$

\qquad

Result

The mass of NaOH in the whole of the given solution $=$ \qquad

2. Estimation of Sodium carbonate using std. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Aim: Determine the mass of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ in the whole of the given solution.
You are supplied with a standard solution of sulphuric acid containing $4.8 \mathrm{~g} / \mathrm{L}$.
Principle

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Procedure
The given $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is made upto 100 mL in a clean standard flask. 20 mL of the made up solution $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ is pipetted out into a clean conical flask. Add two or three drops Methyl orange indicator and titrated against Std. $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution from the burette. At the end point the golden yellow colour changes to orange red. The experiment is repeated to get concordant values.

Observations

Sl. No.	Volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in mL	Burette Reading		Volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in mL
		Initial	Final	
1.	20	0		
2.	20	0		
3.	20	0		

Calculations:

Mass per litre of $\mathrm{H}_{2} \mathrm{SO}_{4}=4.8 \mathrm{~g} / \mathrm{L}$
Equivalent mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=49$
Normality of $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~N}_{1}=\frac{\text { Mass per litre }}{\text { Equivalent mass }}=\frac{4.8}{49}=0.0979 \mathrm{~N}$
Volume of $\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{~V}_{1}\right)=$ \qquad mL
Volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution pipetted out, $\mathrm{V}_{2}=20 \mathrm{~mL}$
Normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(\mathrm{~N}_{2}\right)=$?
From normality equation, $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$,
$\mathrm{N}_{2}=\frac{\mathrm{N}_{1} \mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{0.0979 \times \ldots \ldots . .}{20}=$ \qquad
Equivalent mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=53$
Mass per litre of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $=$ Normality \times Equivalent mass $=$ \qquad $\times 53=$ g/L
The mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the whole of the given solution $=\frac{\text { Mass per litre } \times 100}{1000}$

$$
=\frac{\text { Mass per litre }}{10}=\frac{\ldots}{10}=\ldots g
$$

Result

The mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the whole of the given solution $=$

ACIDIMETRY

1. Estimation of Oxalic acid using std. KOH

Aim: Determine the mass of oxalic acid in the whole of the given solution. You are supplied with a standard solution of potassium hydroxide containing $5.7 \mathrm{~g} / \mathrm{L}$.
Principle

$$
2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Procedure

The given oxalic acid solution is made upto 100 mL in a clean standard flask. A clean burette is rinsed with the made up oxalic acid solution upto the zero mark. 20 mL of the KOH solution is pipetted out into a clean conical flask. One or two drops phenolphthalein indicator is added and titrated against oxalic acid solution from the burette. At the end point, the pink colour changes to colourless. The final burette reading is noted. The experiment is repeated to get concordant values.

Observations

SI. No.	Volume of KOH in mL	Burette Reading		Volume of $\mathbf{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{in} \mathrm{mL}$
		Initial	Final	
1.	20	0		
2.	20	0		
3.	20	0		

Calculations:

Mass per litre of $\mathrm{KOH}=5.7 \mathrm{~g} / \mathrm{L}$
Equivalent mass of $\mathrm{KOH}=56$
Normality of $\mathrm{KOH}, \mathrm{N}_{2}=\frac{\text { Mass per litre }}{\text { Equivalent mass }}=\frac{5.7}{56}=0.1018 \mathrm{~N}$
Volume of KOH solution pipetted out, $\mathrm{V}_{2}=20 \mathrm{~mL}$
Volume of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{~V}_{1}\right)=$ \qquad mL
Normality of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{~N}_{1}\right)=$?
From normality equation, $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$,
$\mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\frac{0.1018 \times 20}{\ldots \ldots \ldots}=$ \qquad N

Equivalent mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=63$
Mass per litre of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution $=$ Normality \times Equivalent mass $=$ \qquad $x 63=$ g/L
The mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the whole of the given solution $=\frac{\text { Mass per litre } \times 100}{1000}$

Result
The mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the whole of the given solution $=$ \qquad g

2. Estimation of Nitric Acid using std. $\mathrm{K}_{2} \mathrm{CO}_{3}$

Aim: Determine the mass of nitric acid $\left(\mathrm{HNO}_{3}\right)$ in the whole of the given solution. You are supplied with a standard solution of potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ containing $6.8 \mathrm{~g} / \mathrm{L}$. Principle

$$
\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{KNO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Procedure

The given HNO_{3} solution is made upto 100 mL in a clean standard flask. A clean burette is rinsed with the made up solution and is filled upto the zero mark. 20 mL of $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution is pipetted out into a clean conical flask. Two or three drops methyl orange indicator is added and titrated against HNO_{3} solution from the burette. At the end point the golden yellow colour changes to orange red. The final burette reading is noted. The experiment is repeated to get concordant values.

Observations

SI. No.	Volume of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in mL	Burette Reading		Volume of $\mathrm{HNO}_{3} \mathrm{in} \mathrm{mL}$
		Initial	Final	
1.	20	0		
2.	20	0		
3.	20	0		

Calculations:

Mass per litre of $\mathrm{K}_{2} \mathrm{CO}_{3}=6.8 \mathrm{~g} / \mathrm{L}$
Equivalent mass of $\mathrm{K}_{2} \mathrm{CO}_{3}=69$
Normality of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{~N}_{2}=\frac{\text { Mass per litre }}{\text { Equivalent mass }}=\frac{6.8}{69}=0.0985 \mathrm{~N}$
Volume of $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution pipetted out, $\mathrm{V}_{2}=20 \mathrm{~mL}$
Volume of $\mathrm{HNO}_{3}\left(\mathrm{~V}_{1}\right)=$ \qquad mL
Normality of $\mathrm{HNO}_{3}\left(\mathrm{~N}_{1}\right)=$?
From normality equation, $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$,
$\mathrm{N}_{1}=\frac{\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\frac{0.0985 \times 20}{\ldots \ldots \ldots}=$ \qquad N

Equivalent mass of $\mathrm{HNO}_{3}=63$
Mass per litre of HNO_{3} solution $=$ Normality \times Equivalent mass $=$ \qquad x 63 = g/L
The mass of HNO_{3} in the whole of the given solution $=\frac{\text { Mass per litre } \times 100}{1000}$

Result

The mass of HNO_{3} in the whole of the given solution $=$ \qquad g
@ @

