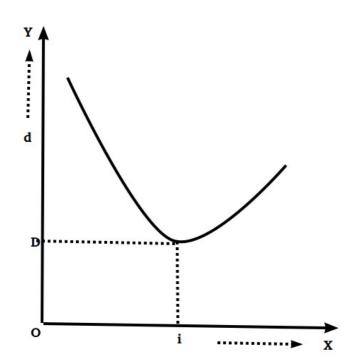

Refraction through a Prism


Aim:

- 1. To study the variation of the angle of deviation (d) with an angle of incidence (i) and to find the angle of minimum deviation from the I-d curve.
- 2. To find the refractive index of the material of the prism

Apparatus:

Glass Prism, Drawing board, Protractor, etc

Theory:

The refractive index of the material of the prism

$$n = \frac{\sin\frac{(A+B)}{2}}{\sin\frac{A}{2}}$$

Where A is the angle of the prism and D is the angle of minimum deviation. The angle of minimum deviation can be found from the I-d curve.

Observations:

Observ	<u>auviis.</u>		_		
Sl No	Angle of Incidence (i)	Angle of deviation (d)	Calculations:		
	ilicidelice (1)	deviation (d)	Calculations.		
1	35		From the graph D =	e degree	
2	40		Refractive index r	. (A+B)	
3	45			$n = \frac{\sin \frac{(11+2)}{2}}{2}$	_
4	50			$\sin \frac{A}{2}$	
5	55			2	=
6	60				

Result: Refractive index of the material of the Prism =