Ohm's Law II

AIM: To verify the laws of combination of Resistances.
APPARATUS: Cells, Ammeter, Voltmeter, Rheostat, Key, Resistances, Bread Board, Connecting wires etc
THEORY: At constant temperature, the current passing through the conductor is directly proportional to the potential difference across the conductor.

That is $\mathbf{V} \boldsymbol{\alpha} \mathbf{I}$ or $\frac{V}{I}=R$ the resistance of the conductor.
When two resistances R_{1} and R_{2} connected in series, the effective resistance $R_{s}=R_{1}+R_{2}$.

When they are connected in parallel , the effective resistance is given by $\frac{1}{R_{s}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

$$
\text { or } \quad R_{p}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

OBSERVATIONS:

Least Count of the ammeter $=$
A
Least Count of the voltmeter $=$ V

Resistance	Trial No	Ammeter Reading (I) Ampere	Voltmeter Reading (V) Volts	$R=\frac{V}{I} \quad \Omega$	Mean R Ω
R_{1}	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$				$\mathrm{R}_{1}=$
R_{2}	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$				$\mathrm{R}_{2}=$
R_{1} and R_{2} in Series	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$				$\mathrm{R}_{\mathrm{s}}=$
R_{1} and R_{2} in Parallel	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$				$\mathrm{R}_{\mathrm{p}}=$

CALCULATIONS:

$\mathrm{R}_{1}=$
Ω
$\mathrm{R}_{2}=$
Ω
$\mathrm{R}_{\mathrm{s}}=$
$\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}=\quad=\quad \Omega$
$\mathrm{R}_{\mathrm{p}}=\quad \quad \Omega$
$R_{p}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad=\quad \Omega$

RESULT:

The laws of combination of Resistances in Series and Parallel are verified.

