Ohm's Law II

<u>AIM</u>: To verify the laws of combination of Resistances.

<u>APPARATUS</u>: Cells, Ammeter, Voltmeter, Rheostat, Key, Resistances, Bread Board, Connecting wires etc

THEORY: At constant temperature, the current passing through the conductor is directly proportional to the potential difference across the conductor.

А

V

That is **V** α **I** or $\frac{V}{I} = R$ the resistance of the conductor.

When they are connected in parallel , the effective resistance is

given by $\frac{1}{R_s} = \frac{1}{R_1} + \frac{1}{R_2}$

or
$$R_p = \frac{R_1 R_2}{R_1 + R_2}$$

OBSERVATIONS:

Least Count of the ammeter =

Least Count of the voltmeter =

Resistance	Trial No	Ammeter Reading (I) Ampere	Voltmeter Reading (V) Volts	$R = \frac{V}{I} \Omega$	Mean R Ω
	1				
	2				$R_1 =$
R_1	3				
	4				
	1				
R ₂	2				$R_2 =$
	3				
	4				
	1				7
R_1 and R_2 in	2				$R_s =$
Series	3				
	4				
	1				7
R_1 and R_2 in	2				$\mathbf{R}_{\mathrm{p}} =$
Parallel	3				
	4				

CALCULATIONS:

$R_1 =$	Ω		
$R_2 =$	Ω		
R _s =			
$\mathbf{R}_{\mathrm{s}} = \mathbf{R}_{1} + \mathbf{R}_{2} =$		=	Ω
$R_p =$	Ω		
$R_p = \frac{R_1 R_2}{R_1 + R_2}$	=	=	Ω

<u>RESULT</u>:

The laws of combination of Resistances in Series and Parallel are verified.