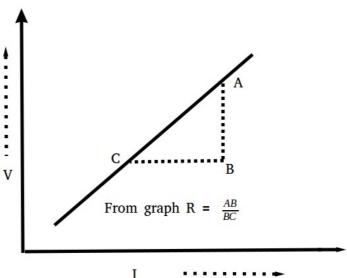
Ohm's Law I

<u>AIM</u>: To verify the relation between the voltage and current for a given resistance and hence to find the Resistance and Conductance of the wire, resistivity and conductivity of the material of the wire. <u>APPARATUS</u>: Cells, Ammeter, Voltmeter, Rheostat, Key, Screw Gauge, Meter Scale, Bread Board, Connecting wires etc


THEORY: At constant temperature, the current passing through the conductor is directly proportional to the potential difference across the conductor.

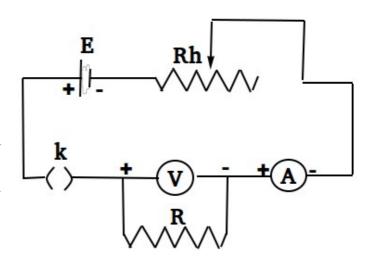
That is **V** α **I** or $\frac{V}{I} = R$ the resistance of the conductor.

The Conductance $G = \frac{1}{R}$

The resistivity of the material of the conductor $\rho = \frac{\pi \, r^2 R}{L}$ where ${\bf r}$ is the radius and ${\bf L}$ is the length of the conductor.

The conductivity of the material of the wire $\sigma = \frac{1}{\Omega}$

OBSERVATIONS:


1. To find the resistance of the wire (R)

Least Count of the ammeter = A

Least Count of the voltmeter = V

Length of the resistance wire L= cm

= m

Trial No	Ammeter Reading (I) Ampere	Voltmeter Reading (V) Volts	$R = \frac{V}{I}$ Ω	Mean R Ω
1				
2				
3				
4				
5				
6				
7				

2. To find the radius of the wire (r)

Value of One Pitch Scale Division =

Pitch of the screw $P = \frac{Distance\ Moved}{Number\ of\ Rotations} = mm$

Number of Divisions on the head scale N =

Least Count LC = $\frac{Pitch}{N}$ = mm

Zero Coincidence = Divisions Zero Correction = Divisions

Sl No	Pitch Scale Reading (PSR) mm	Observed Head Scale Reading (HSR)	Corrected Head Scale Reading (Corr. HSR)	Total Reading PSR + (Corr. HSR x LC)	Mean (d) mm
1					
2					
3					
4					
5					
6					

Radius of the wire $r = \frac{d}{2} = cm = m$

CALCULATIONS:

Resistance of the wire from the graph $= \frac{AB}{BC} = = \Omega$

Mean Resistance R = $\qquad \qquad = \qquad \qquad \square$

The Conductance of the wire $G = \frac{1}{R} = mho$

The resistivity of the material of the conductor $\rho = \frac{\pi r^2 R}{L}$ =

L = Ω m

mm

The conductivity of the material of the wire $\sigma = \frac{1}{\Omega}$

 $= \qquad \qquad \Omega^{-1} \, \mathbf{m}^{-1}$

RESULT:

1. Voltage is found proportional to the current. Hence Ohm's Law is verified

2. Resistance of the given wire $= \Omega$

3. Conductance of the given wire = Ω^{-1}

4. Resistivity of the material of the wire $= \Omega m$

5. Conductivity of the material of the wire = $\Omega^{-1} \, m^{-1}$