Metre Bridge II

Aim:

To compare the resistances of the given two resistors.

Apparatus:

Metre Bridge, Cells, Key, Resistance Box, Carbon Resistances, Galvanometer, Jockey, Breadboard etc.

Theory:
According to the Wheatstone's principal, when bridge is balanced at a balancing length \boldsymbol{I} $\frac{R_{1}}{R_{2}}=\frac{l r}{(100-l) r}=\frac{l}{(100-l)}$ where \mathbf{r} is the resistance per unit length of the wire AB.

Observations:

1. To find the ratio of resistances

Resistance $\mathbf{R}_{\mathbf{1}}$ is in	Balancing length (l) cm	$(100-\mathrm{l})$ cm	$\frac{R_{1}}{R_{2}}=\frac{l}{(100-l)}$ Left gap
Right gap			

$$
\text { Mean } \frac{R_{1}}{R_{2}}=
$$

RESULTS:

1. The Ratio of Resistances of given resistors
