<u>Metre Bridge I</u>

<u>Aim:</u>

To determine the **resistance** and hence the **resistivity** of the material of the wire.

Apparatus:

Metre Bridge, Cells, Key, Resistance Box, Resistance wire, Galvanometer, Jockey, Screw Gauge, Metre Scale etc.

Theory:

According to the Wheatstone's principal, when bridge is balanced at a balancing length l $\frac{X}{R} = \frac{lr'}{(100-l)r'} = \frac{l}{(100-l)}$ where r' is the resistance per unit length of the wire AB. That is resistance of the wire $X = \frac{l}{(100-l)}R$ and the resistivity $\rho = \frac{\pi r^2 X}{L}$

where **r** is radius of the wire and **L** is the length of the wire.

Observations:

1. To find the resistance of the wire (X)

Trial	Resistance R Ω	Balancing leng	th when X is in	Mean l cm	(100 -l)	$X = \frac{l}{R}$	Ω
No		Left gap	Right gap		cm	$(100-l)^{11}$	
1							
2							
3							
4							
5							
6							

2. To find the radius of the wire (r)

Value of One Pitch Scale Division	=	mm
Pitch of the screw $P = \frac{Distance Moved}{Number of Rotations}$	=	mm
Number of Divisions on the head scale	1 =	

Least Count **LC** = $\frac{Pitch}{N}$ = mm

Zero Coincidence = Divisions

Zero Correction = Divisions

Sl No	Pitch Scale Reading (PSR) mm	Observed Head Scale Reading (HSR)	Corrected Head Scale Reading (Corr. HSR)	Total Reading PSR + (Corr. HSR x LC)	Mean (d) mm
1					
2					
3					
4					
5					
6					

CALCULATIONS:

Radius	of the wire $r =$	$\frac{d}{2}$	=	cm	=		m				
Mean]	Resistance X =					=			Ω		
The resistivity of the material of the conductor $\rho = \frac{\pi r^2 X}{L}$ =											
									=		Ωm
<u>RESULTS</u> :											
1.	Resistance of the	given w	rire					=		Ω	
2.	Resistivity of the	materia	l of the	wire				=		Ω m	