Metre Bridge I

Aim:

To determine the resistance and hence the resistivity of the material of the wire.

Apparatus:

Metre Bridge, Cells, Key, Resistance Box, Resistance wire, Galvanometer, Jockey, Screw Gauge, Metre Scale etc.

Theory:
According to the Wheatstone's principal, when bridge is balanced at a balancing length I $\frac{X}{R}=\frac{l r^{\prime}}{(100-l) r^{\prime}}=\frac{l}{(100-l)}$ where r^{\prime} is the resistance per unit length of the wire AB.
That is resistance of the wire $\quad X=\frac{l}{(100-l)} R$

$$
\text { and the resistivity } \rho=\frac{\pi r^{2} X}{L}
$$

where \mathbf{r} is radius of the wire and \mathbf{L} is the length of the wire.

Observations:

1. To find the resistance of the wire (X)

$\begin{gathered} \text { Trial } \\ \text { No } \end{gathered}$	$\begin{gathered} \hline \text { Resistance } \\ \mathrm{R} \Omega \end{gathered}$	Balancing length when X is in		Mean 1 cm	$\begin{gathered} (100-1) \\ c m \end{gathered}$	$X=\frac{l}{(100-l)} R \quad \Omega$	
		Left gap	Right gap				
1							
2							
3							
4							
5							
6							

[^0]2. To find the radius of the wire (r)

Value of One Pitch Scale Division $=\quad \mathrm{mm}$
Pitch of the screw $\quad \mathrm{P}=\frac{\text { Distance Moved }}{\text { Number of Rotations }}=\quad \mathrm{mm}$
Number of Divisions on the head scale $\mathrm{N}=$
Least Count LC $\quad=\frac{\text { Pitch }}{N} \quad=\quad \mathrm{mm}$

Zero Coincidence $=\quad$ Divisions \quad Zero Correction $=\quad$ Divisions

Sl No	Pitch Scale Reading (PSR) mm	Observed Head Scale Reading (HSR)	Corrected Head Scale Reading (Corr. HSR)	Total Reading PSR + (Corr. HSR x LC)	Mean (d) mm
1					
2					
3					
5					
6					

CALCULATIONS:

Radius of the wire $\mathrm{r}=\frac{d}{2} \quad=\mathrm{cm}=\mathrm{m}$

Mean Resistance $\mathrm{X}=\quad=\quad \Omega$
The resistivity of the material of the conductor $\rho=\frac{\pi r^{2} X}{L} \quad=$
$=$
$\Omega \mathrm{m}$

RESULTS:

1. Resistance of the given wire $=$
Ω
2. Resistivity of the material of the wire $=$
$\Omega \mathrm{m}$

[^0]: Length of the wire $\mathbf{L}=$ cm

