Liquid Lens

Aim:

To find the refractive index of the given liquid using convex lens and plane mirror Apparatus:

Convex lens, Plane Mirror, given liquid, Pointer, stand etc

Theory:

We can consider the experimental set up as a combination of two lenses, a convex lens (focal length f_{G}) and a plano - concave liquid lens (focal length f_{L})

Then the resultant focal length of the combination is given by the equation

$$
\frac{1}{F}=\frac{1}{f_{G}}+\frac{1}{f_{L}}
$$

Then the focal length of the liquid lens,

$$
f_{L}=\frac{F f_{G}}{f_{G}-F}
$$

And refractive index of the liquid is given by

$$
n=2-\frac{f_{G}}{F}
$$

Observations:

Lens Used	Distance of the pointer from (cm)						Mean (cm)
	Top of the lens				Bottom of the lens		
	1	2	Mean $\left(\mathrm{h}_{1}\right)$	1	2	Mean $\left(\mathrm{h}_{2}\right)$	
Convex Lens							$\mathrm{f}_{\mathrm{G}}=$
Combination of Convex Lens and Liquid Lens							$\mathrm{F}=$

Calculations:

Focal length of the liquid lens, $f_{L}=\frac{F f_{G}}{f_{G}-F}=$ $=\quad \mathrm{cm} \quad=\mathrm{m}$

Refractive index of the liquid $n=2-\frac{f_{G}}{F}=$

Result:

1. Focal Length of the given Liquid (Water)
2. Refractive Index of the Liquid (Water)
