Concave Mirror

Aim:
To find the Focal Length of the Concave Mirror and hence to find its Radius of Curvature.

Apparatus:

Concave Mirror, Screen, Illuminated wire Gauze, Stand, metre scale etc.

Principle:

1. The distance object method:

If the object is placed in infinity, the distance between the lens and the screen is the focal length
2. $\mathbf{u}-\mathbf{v}$ method:

The focal length

$$
f=\frac{u v}{u+v}
$$

where \mathbf{u} is the object distance and v is the image distance

3. Normal Reflection Method:

In this method $\mathbf{u}=\mathbf{v}=\mathbf{R}$
then $2 \mathrm{f}=\mathrm{R}$ or $f=\frac{R}{2}$

Normal Reflection Method

5. From $\frac{1}{u}-\frac{1}{v}$ graph: The focal length

$$
f=\frac{2}{O A+O B}
$$

where $O A$ and $O B$ are the intercepts at X - axis and Y - axis.

Observations:
Distance Object Method:

$\mathrm{f} 1=$	cm	$\mathrm{f} 2=$	cm	$\mathrm{f} 3=$	cm	Mean $\mathbf{f}=$	$\mathrm{cm}=$

Normal Reflection Method:

R1 =	cm	$\mathrm{R} 2=$	cm	R3 =	cm	Mean $\mathbf{R}=\quad \mathrm{cm}=$			m	
						Focal Leng	$/ 2=$	cm		m

u - v method

Trial No	Object Distance (u) cm	Image Distance (v) cm	$\frac{1}{u}$	$\frac{1}{v}$	$f=\frac{u v}{u+v}$	Mean f
1						
2						
3						
4						
5						
6						

Calculations:

From u-v graph: $f=\frac{O A+O B}{4}=\quad=\quad \mathrm{cm}=\quad \mathrm{m}$
From $\frac{1}{u}-\frac{1}{v}$ graph: $f=\frac{2}{O A+O B}=\quad=\quad \mathrm{cm}=\quad \mathrm{m}$

Results:

1. Focal length of the given Concave Mirror from u-v method $=\mathrm{m}$
2. Focal length of the given Concave Mirror from u-v graph
$=\quad \mathrm{m}$
3. Focal length of the given Concave Mirror from $\frac{1}{u}-\frac{1}{v}$ graph $=\mathrm{m}$
4. Focal length of the given Concave Mirror from distant object method $=\mathrm{m}$
5. Radius of Curvature of the Concave Mirror =
m
