Concave Lens

Aim: To find the focal length of the Concave Lens by using a Convex Lens in contact with the Concave Lens.
Apparatus: Concave Lens, Convex Lens, Illuminated wire gauze, Screen etc.

Principle:

When two lenses of focal lengths f_{1} and f_{2} are kept in combination co-axially, the effective focal length (F) of the combination is given by the equation $\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
If f_{1} is the focal length of the Convex lens and $f 2$ is that of the Concave Lens, the focal length of the Concave Lens is given by the equation $f_{2}=\frac{F f_{1}}{f_{1}-F}$

Lens Used	Sl No.	Object distance (u) cm	Image distance (v) cm	$f=\frac{u v}{u+v}$ Cm	Mean (cm)
Convex Lens	1				
	2				
Convex Lens and					
Concave Lens in					
Contact	2	2			$\mathrm{f}_{1}=$
	3			$\mathrm{~F}=$	

Focal Length of the Concave Lens

$$
\begin{array}{rll}
f_{2}=\frac{F f_{1}}{f_{1}-F} & = & \\
P=\frac{1}{f_{2}} & =\quad \text { D }
\end{array}
$$

$$
=\quad \mathrm{cm}
$$

=m

Power of the Concave Lens

Result:

Focal Length of the given Concave Lens $=\quad \mathrm{m}$

D

