Exp. No. :

Date:

<u>**Concave Lens**</u> <u>**Aim**</u>: To find the focal length of the Concave Lens by using a Convex Lens in contact with the

Concave Lens.

<u>**Apparatus</u>**: Concave Lens, Convex Lens, Illuminated wire gauze, Screen etc. <u>**Principle**</u>:</u>

When two lenses of focal lengths f_1 and f_2 are kept in combination co-axially, the effective focal length (F) of the combination is given by the equation $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$ If f_1 is the focal length of the Convex lens and f2 is that of the Concave Lens, the focal length of the Concave Lens is given by the equation $f_2 = \frac{Ff_1}{f_2 - F}$

Lens Used	Sl No.	Object distance (u) cm	Image distance (v) cm	$f = \frac{uv}{u+v}$ Cm	Mean (cm)
Convex Lens	1				
	2				f ₁ =
	3				-1
	4				
	5				
Convex Lens and Concave Lens in Contact	1				
	2				F =
	3				
	4				
	5				

Focal Length of the Concave Lens	$f_2 = \frac{Ff_1}{f_1 - F}$	=		=	cm	=m
Power of the Concave Lens	$P = \frac{1}{f_2}$	=	D			

Result:

Focal Length of the given Concave Lens	=	m
Power of the given Concave Lens	=	D