GVHSS PAYYOLI- PHYSICS PRACTICAL SECTION A

 You are given a rectangular/ cylindrical body and vernier calipers .Using the Vernier calipers measure the dimension of the body, tabulate the observation and hence find the volume of given body? *Least count of the vernier=Value of one main scale division / no of divisions on the vernier *Total reading=M.S.R+(V.S.R×L.C) M.S.R- main scale reading,V.S.R-vernier scale reading,L.C- least count *Volume of cylinder,V=πr²h, r= radius of cylinder,h= height of cylindr

*Volume of rectangular block, V= lbh

l= length,b= breadth,h=height

Observations and calculations: cylinder

Value of one main scale division=....mm

No of divisions on the vernier=...

Least count= value of one m s d/ no of division on vern

=.....mm =.....cm

Dimensions	Trial no	MSR cm	VSR div	Total reading= MSR+(VSR×LC)	Mean cm
Diameter		1000			1
Length	and a second	0			

Mean diameter of the cylinder=...m

Radius of the cylinder(r)=.....m

Mean length of the cylinder(l)=....m

Volume of the cylinder, $V = \pi r^2 h = \dots m^3$

Observations and calculations: rect bk

Dimensions	Trial no	MSR cm	VSR div	Total reading= MSR+(VSR×LC)	Mean cm
length					- h -
Breadth					S
height					

Mean length of the block=.....m Mean breadth of the block=....m Mean height of the block=.....m Volume of the rectangular block,V=lbh=....m³

2. A sphere of known mass is given along with vernier calipers. Determine diameter and hence volume. Also find the density of sphere (mass of

sphere=.....)

*Least count of the vernier=Value of one main scale division / no of divisions on the vernier

*Total reading=M.S.R+(V.S.R×L.C)

M.S.R- main scale reading, V.S.R-vernier scale reading, L.C- least count

* volume of sphere, $V=4/3\pi r^3$, r= radius of the sphere * density = mass/ volume

density - mass/ volume

Observations and calculations

Value of one main scale division=.....mm

No of divisions on the vernier=...

Least count= value of one m s.d/ no of division on vern

=.....mm =....cm

Dimensions	Trial no	MSR cm	VSR div	Total reading= MSR+(VSR×LC)	Mean
Diameter			1.1.1.1		

Radius of the sphere=...m * volume of sphere, $V=4/3\pi r^3 = \dots m^3$ Density of the sphere= mass/ volume=....kg/m³ You are supplied with vernier calipers. Determine internal volume of the given calorimeter. Hence find mass of water that can be taken in the calorimeter(density of water is 1000 kg/m³.) *Least count of the vernier=Value of one main scale division / no of divisions on the vernier *Total reading=M.S.R+(V.S.R×L.C) M.S.R- main scale reading, V.S.R-vernier scale reading,L.C- least count Volume of calorimeter= $\pi r^2 h$, r= radius,h=depth of the calorimeter Mass of water=volume×density **Observations and calculations** Value of one main scale division=....mm No of divisions on the vernier=... Least count= value of one m s d/ no of division on vern

Mean diameter of the sphere=....m

dimensions	Trial no	MSR cm	VSR div	Total reading= MSR+(VSR×LC)	Mean cm
diameter		100			
depth		DIAN A			

Diameter of calory meter=cm=....m

Radius of calori meter=....m

Depth of calory meter=....m

4.

Volume of calorimeter, $V = \pi r^2 h = ...m^3$

- Mass of water, volume×density=...kg
- A screw gauge and a meter scale are supplied . Determine diameter of wire and hence find its volume. *Pitch is the distance moved for one complete rotation *Least ount.(LC)=pitch/ no of divisions on the head scale

*Total reading= PSR+ (Corrected HSR×LC)

PSR- pitch scale reading,HSR- head scale reading,LCleast count

Volume of the wire, $V = \pi r^2 l$, r - radius, l - length of the wire

Observations and calculations

Distance moved for five rotation=...mm

Pitch=distance moved for five rotation/5

Least count=pitch/ no of divisions on head scale

Zero error ... div, zero correction=..... div

Tr ial no	PSR mm	HSR	Correcte d HSR	Total reading=PSR+(corre cted HSR×LC) mm	Mean mm

Mean diameter of the wire=....m Radius of the wire=....m

Volume of the wire= $V = \pi r^2 I = \dots m^3$

Determine thickness of glass plate and its volume.
You are supplied with screw gauge and graph paper.
*Pitch is the distance moved for one complete rotation

*Least ount.(LC)=pitch/ no of divisions on the head scale

*Total reading= PSR+ (Corrected HSR×LC)

PSR- pitch scale reading,HSR- head scale reading,LCleast count

Volume of the glass plate,V= area ×thickness Observations and calculations

Distance moved for five rotation=...mm Pitch=distance moved for five rotation/5

Least count=pitch/ no of divisions on head scale

Zero error=...div, zero correction=.....div

Trial no	PSR mm	HSR	Corrected HSR	Total reading=PSR+(corrected HSR×LC) mm	Mean mm
-------------	-----------	-----	------------------	---	------------

Thickness of glass plate=....mm=....m

Area of glass plate=...m²=....m²

Volume of glass plate=area×thickness= ...m³

6. Determine the volume of given lead shot using screw gauge?

*Pitch is the distance moved for one complete rotation *Least ount.(LC)=pitch/ no of divisions on the head scale

*Total reading= PSR+ (Corrected HSR×LC)

PSR- pitch scale reading,HSR- head scale reading,LCleast count

Volume of lead shot, $V = 4/3 \pi r^3$, r – radius

Observations and calculations

Distance moved for five rotation=...mm

Pitch=distance moved for five rotation/5

Least count=pitch/ no of divisions on head scale

Zero error...div, zero correction=.....div

Trial no	PSR mm	HSR	Corrected HSR	Total reading=PSR+(corrected HSR×LC) mm	Mean mm
					A.

Mean diameter of the lead shot=....m

Radius of the lead shot=...,m

Volume of lead shot, $V = 4/3 \pi r^3 = \dots m^3$

7. Using the principle of moments determine mass of given body?

By principle of moments PC×W=QC×m m=PC×W/QC

Observations and calculations

Trial no	W g	QC cm	PC cm	m= W×PC/QC g
Mean m	285 m=	$\sigma = k\sigma$		

8. Using Graveson's Parallelogram law apparatus balance the body using three sets of known weights. Complete the parallelogram and find the mass of body

When the point o is in equilibrium resultant of P and Q balances W.By parallelo gram law if OD= diagonal then resultant,R=OD×scale

Also R= $P^2+Q^2+2PQ\cos\theta$

Observations and calculations: scale 1cm=..gw

Trial no	P gwt	Q gwt	OA cm	OB cm	OD cm	Angle AOB	Calculate of R(gwt)	l value
					a san		ODXscale	R= 59-4+2100
_						h. 1	Section 2	

Mean weight of the body=...gwt=.. kgwt

9. With the help of helical spring tabulate the extension for at least four different loads. Draw load extension graph and determine spring constant using the graph *According to Hooks law Within the elastic limit ratio of load to extension is a constant

Load/ extension= K, spring constant

*Spring constant k=mg/l, l= extension

m- mass ,g= acceleration due to gravity

*from graph,m/I =AB/BC , k=(AB/BC)g

Observations and calculations

Mass	Reading o	of the point	er	Exte	K=
kg	loading	unloa ding	Mean cm	n l(m)	N/m
	Mass suspended kg	Mass suspended kg loading	Mass suspended kg loading unloa ding	Mass suspended kg loading unloa Mean ding cm	Mass suspended kg Reading of the pointer Extension loading unloa Mean ding n cm

From graph,K= (AB/BC)×g=.....N/m

10. Tabulate load extension for helical spring with atleast four different loads and find spring constant by calculation. Also find mass of given body

*According to Hooks law Within the elastic limit ratio of load to extension is a constant

Load/ extension= K ,spring constant

*Spring constant k=mg/l, l= extension

m- mass ,g= acceleration due to gravity

*mass of the body= KI'/g, I'-extension for unknown mass

Observations and calculations: Spring const

	Tri	Mass	Reading o	f the point	er	Extens	K=
	al no	suspended kg	loading	unloa ding	Mea n cm	l(m)	mg/l N/m
1	_	and the second second					

Mean ,K=.....N/m

Trial no	Frequency of tuning fork,n (Hz)	First resonance length l ₁ (cm)		Second resonance length l ₂ (cm)		d ince 1)	Velocity of sound $V_{t}= 2n(l_{2}-l_{1})$ cm/s^{2}	
		1	2	me an	1	2	mea n	1

Mean $V_t = cm/s^2 =m/s^2$

16. Using resonance column determine the velocity of sound at room temperature and frequency of given tuning fork. you are given the tuning fork of frequencies 512,480,426 Hz as the known values *Velocity of sound at room temperature is V_i= 2n(l₂-l₁), n- frequency of tuning fork, l₁- first resonance length, l₂ - second resonance length

If l_1^{-1} and l_2^{-1} represents the first and second resonance length for a tuning fork of unknown frequency n^1 , then $n^1 = V_t / 2(l_1^{-1} - l_2^{-1})$

Observations and calculations: (a)to find V_t

Trial no	Frequency of tuning fork,n (Hz)	First resonance length l ₁ (cm)		Second resonance length l ₂ (cm)			Velocity of sound $V_i = 2n(l_2 - l_1)$ cm/s ²	
		1	2	me an	1	2	mea n	
2.0								

Mean $V_t = cm/s^2 =m/s^2$

(b)Determination of unknown frequency

Trial no	Frequency of tuning fork, (Hz) n ¹	First resonance length l ₁ (cm)		Second resonance length l ₂ (cm)			Velocity of sound $n^1 = V_t$ $2(L^1 - L^1)$	
		1	2	me an	1	2	mea n	Hz
	unknown		í I	()				

Unknown frequency ,n¹=.....Hz

17. Compare the frequencies of two tuning forks using resonance column. Hence find the end correction If l_1 and l_2 are the first and second resonance length for a tuning fork of frequency n_1 , then velocity of sound at room temp is given by, $V_t = 2n_1(l_2-l_1)$ (1) If l_1^{-1} and l_2^{-1} are the first and second resonance length for a tuning fork of frequency n_2 then velocity of sound at room temp is given by, $V_t = 2n_2(l_2^{-1}-l_1^{-1})$ (2) from (1) and (2), ratio $n_1/n_2 = (l_2^{-1}-l_1^{-1})/(l_2-l_1)$ end correction $e=(l_2-3l_1)/2$

Frequency of tuning fork,n (Hz	First resonance length l ₁ (cm)			Second resonance length l ₂ (cm)			end correction e=(I ₂ -3I ₁)/2
74	1	2	mea n	1	2	mean	
		1.1	I ₁ =			I ₂ =	Territoria -
			l11=			121=	

Ratio of frequencies, $n_1/n_2 = (l_2^1 - l_1^1)/(l_2 - l_1) = ... Hz$

SECTION B

1. Determine resistance of wire by ohms law? According to ohms law, at constant temperature the current flowing through a conductor is directly proportional to pd across its ends, ie VoltageV=IR I-current, R-resistance, or R or X=V/I

Mean ,X=.....Ω

2. By drawing current – voltage graph find resistance of given wire by ohms law and find conductance According to ohms law,at constant temperature the current flowing through a conductor is directly proportional to pd across its ends,ie VoltageV=IR I-current,R or X-resistance, or R or X=V/I

Conductance, C= $1/X \Omega^{-1}$

Connection diagram

From V-I graph X= AB/BC, conductance C= BC/AB

Observations and calculations

Trial no	I(A)	V(v)	X=V/Ι (Ω)

Mean ,X=....Ω

from V-I graph $X = AB/BC = ..., \Omega$

conductance C= BC/AB =.... Ω^{-1}

3.Using ohms law compare the resistance of two wires using V-I graph

According to ohms law, at constant temperature the current flowing through a conductor is directly proportional to pd across its ends, ie VoltageV=IR I-current, R or X-resistance, or R or X=V/I

Observations and calculations

Trial no	resistance	I(A)	V(v)	X=V/I (Ω)
1	X ₁	3	- 1 T T - 2	
25 30	X ₂	10	1	

Ratio of resistance, X₁/X₂=.....

3. .Verify law of combination of resistances in series/ parallel using ohms law

According to ohms law, at constant temperature the current flowing through a conductor is directly proportional to pd across its ends, ie VoltageV=IR *When two resistors X_1 and X_2 are connected in series effective resistance $X=X_1+X_2$ When two resistors X_1 and X_2 are connected in

parallel effective resistance $X = X_1X_2 / X_1 + X_2$

Observations and calculations: series/parallel

Trial no	resistance	I(A)	V(v)	X=V/I (Ω)	1
	X1	10		1.1.1.1.1.1	
	X ₂	·			
	$X_1 \& X_2$			0	
					-

Effective resistance in series(practical), $X =, \Omega$ Effective resistance in series(theoretical), $X = X_1 + X_2 = ..., \Omega$ Effective resistance in parallel (practical), $X =, \Omega$ resistance in parallel (theoretical) $X = X_1X_2 / X_1 + X_2...\Omega$

4. Verify law of combination of resistance in series / parallel using ohms law by graphical method According to ohms law, at constant temperature the current flowing through a conductor is directly proportional to pd across its ends, ie VoltageV=IR I-current, R or X-resistance, or R or X=V/I

When two resistors X_1 and X_2 are connected in series effective resistance $X=X_1+X_2$

When two resistors X_1 and X_2 are connected in parallel effective resistance $X = X_1X_2 / X_1 + X_2$

Observations and calculations: series/parallel

Trial no	resistance	I(A)	V(v)	X=V/Ι (Ω)
	X ₁			
	X ₂			
	$X_1 \& X_2$	12-1		

Effective resistance in series(practical),X= Ω Effective resistance in series(theoretical),X= $X_1+X_2 = ... \Omega$ Effective resistance in parallel (practical),X= Ω resistance in parallel (theoretical)X= $X_1X_2 / X_1+X_2...\Omega$

5. Determine resistivity of given wire using meter bridge and screw gauge

For a balanced condition unknown resistance is given by,X= Rl / 100-l, R- known resistance,I l- balancing length

Resistivity of the material of the wire, $\mathbf{P} = \pi r^2 X / L$, r-radius of the wire,X-resistance,L-length of the wire <u>Screw gauge readings to find resistance</u>:

*Pitch is the distance moved for one complete rotation *Least ount.(LC)=pitch/ no of divisions on the head scale

*Total reading= PSR+ (Corrected HSR×LC)

PSR- pitch scale reading,HSR- head scale reading,LCleast count

Connection diagram

X-unknown resistance, R-resistance E-cell, (a-galvanometer, HR-High resistance. J-dockey

Observations and calculations:

no	Known (Ω) resistance(R <u>)</u>	Balancing with unkn resistance	g length 10wn	Mean balancing length cm	$\frac{X=RI}{100-I}$
	1.1.1	In left gap(cm)	in right gap(cm)		

Distance moved for five rotation=...mm

Pitch=distance moved for five rotation/5

Least count=pitch/ no of divisions on head scale

to find radius :Zero error ... div, zero correction=.....div

Trial no	PSR mm	HSR	Corrected HSR	Total reading=PSR+(corrected HSR×LC) mm	Mean mm

Mean diameter of the wire,d=....mm=....m Mean radius of the wirer=d/2=....m Mean resistance.x=....Ω

Resistivity, $p = \pi r^2 X / L = \Omega m$

Verify law of combination of resistances in

series/parallel using meter bridge

For a balanced condition unknown resistance is given by,X= RI / 100-I, R- known resistance,I I- balancing length

*When two resistors X_1 and X_2 are connected in series effective resistance $X=X_1+X_2$

When two resistors X_1 and X_2 are connected in parallel effective resistance $X = X_1X_2 / X_1 + X_2$ Connection diagram

BY SREESHYJU.KP HSST JR PHYSICS , GVHSS PAYYOLI

x-unknown resistance, R-resistance E-cell, &-galvanometer, HR-High resistance. J-bockey

o boot the one chick the control of the

no	Known (Ω) resistance(R <u>)</u>	Balancing with unkr resistance	length Iown	Mean balancing length cm	X= RI 100-1
	a second day the	In left gap(cm)	in right gap(cm)		
X1		C YANG D	1	a lana l'a	
X ₂	and and all h				
X.&X.					

Effective resistance in series(practical), $X = \dots, \Omega$ Effective resistance in series(theoretical), $X = X_1 + X_2 = \dots, \Omega$ Effective resistance in parallel (practical), $X = \dots, \Omega$ resistance in parallel (theoretical) $X = X_1X_2 / X_1 + X_2 \dots \Omega$

7. Compare the resistance of two wires using meter bridge (Resistance box not provided) For a balanced condition when X_1 is connected in the left gap and X_2 in the right gap., then $X_1=X_2I / 100-I$, where I is balancing length. then ratio of resistance, $X_1/X_2=I / 100-I$

X-unknown resistance, Xz resistance E-cell, a-galvanometer, HR-High resistance I-unckey

*****	171-176.61	0 0000	
No	Balancin	g length with resistance	$X_1/X_2 = 1$
1	Left gap,X ₁	Right gap,X ₂	100-1
	1		

ratio of resistance, $X_1/X_2 = I / 100 - I = ...$

 Compare the resistance of two wires by Ohms law According to ohms law, at constant temperature the current flowing through a conductor is directly proportional to pd across its ends, ie VoltageV=IR I-current, R or X-resistance, or R or X=V/I

Then $X_1 = V/I$ and $X_2 = V'/I'$

observation&calculation

- ICARDO AR - Record
x-unknown resist
E-cell
RRheostat
V- Vollmeter
K-Key
a a stad

Trial no	I(A)	V(v)	X ₁ =V/Ι (Ω)	Trial no	ľ(A)	V [*] (v)	$X_2 = V'/I'$ (Ω)
X ₁ =	Ω,	X ₂ =	Ω	$, X_1/X$			

9. Compare the emf's of two cell using potentiometer If l_1 balancing length for E_1 and l_2 balancing length for E_2 then Ratio of emf $E_1/E_2=l_1/l_2$

Observations and calculations

Trial no	Balancing le	Balancing length		
	For E_1 , (I_1)	For E ₂ (I ₂)	diary (
	Citos 10		14	

Ratio of emf=.....

10. Find the emf of the given cell using potentiometer, emf of another cell is.....

If I_1 balancing length for E_1 and I_2 balancing length for E_2 then Ratio of emf $E_1/E_2=I_1/I_2$

If E_2 is given then $E_1 = E_2 I_1 / I_2$

Observations and calculations

Trial no	Balancing le	$E_1/E_2 = I_1/I_2$	
	For E ₁ ,(l ₁)	For E ₂ (I ₂)	
		and the second second	and succession of the

Emf of cell, $E_1 = E_2 I_1 / I_2 = \dots v$

11. Find the focal length of given convex lens by UV method. Verify by distant object method <u>UV method</u>: If u is the object distance and v image distance, then focal length, f=uv/u+v

*<u>Distant object method</u>:when the object is at large distance the image is formed at focus. Distance between image and lens is focal length

Observations	and	calculations:(1)	uv	method	
			_		

Trial no U (cm) V(cm) f=uv/u+v

mean f=uv/u+v =cm =.....m

BY SREESHYJU.KP HSST JR PHYSICS , GVHSS PAYYOLI

(2)	distant	object	method

Trial no	Focal length (cm)

Mean Focal length=.....cm =.....m

12. Find the focal length of given convex lens by UV graph. Also find power of lens If u is the object distance and v image distance, then focal length=uv/u+v

4x-graph

Power of lens is given by ,p=1/f ,where f is the focal length in meter. Unit is diopter(D)

observations&calculations

Trial no	U (cm)	V(cm)

From graph OA=...cm. OB=...cm,f= OA+OB/4= ...m Power $p = 1/f = \dots D$

13.Find the focal length of given convex lens by 1/U-1/V graph. Take at least six sets of readings

If u is the object distance and v image distance, then focal length,f=uv/u+v

1/u-1/v graph

observations&calculations

Trial no	U (cm)	V(cm)	1/u (cm ⁻¹)	1/v (cm ⁻¹)

From graph OA=....cm⁻¹, OB=....cm⁻¹. f= 2/OA+OB=..m

13.Find the focal length of given concave mirror using UV graph with at least six sets of readings

If u is the object distance and v image distance, then focal length,f=uv/u+v

Uv-graph

observations&calculations

Trial no	U (cm)	V(cm)
	A STORE	Section 1

From graph OA=...cm. OB=...cm,f= OA+OB/4= ...m

13. Find the focal length of given concave mirror using 1/U- 1/V graph with at least six sets of readings. If u is the object distance and v image distance, then focal length,f=uv/u+v

1/u-1/v graph

observations&calculations

Trial no	U (cm)	V(cm)	1/u (cm ⁻¹)	1/v (cm ⁻¹)
----------	--------	-------	----------------------------	----------------------------

From graph OA=....cm⁻¹, OB=....cm⁻¹. f= 2/OA+OB=..m

14. Find the focal length of given concave mirror using UV method with at least six sets of readings. Verify using normal incidence method

Uv- method: If u is the object distance and v image distance, then focal length,f=uv/u+v

Normal incidence method:

If the object is at the center of curvature of concave mirror , image is formed at the same position . Then the distance between the mirror and the object gives radius of curvature then focal length f=R/2 Observations and calculations:(1) uv method

Trial no	U (cm)	V(cm)	f=uv/u+v (cm)

mean f=uv/u+v =cm =.....m

(2)Normal incidence method

Trial no	F=R/2 (cm)	
1	MALS RIVER	

Mean f =....m

15. Fond the focal length of given convex mirror using convex lens

If the image formed by a convex lens placed in front of a convex mirror is at the centre of curvature of the mirror ,the rays are falling normally on the mirror . Then the distance between the mirror and image formed by convex lens is radius of curvature of the mirror. Then focal length f=R/2

observations&calculations

Trial no	Dist between
	screen and
	mirror,R (cm)

Mean R=.....cm=.....m Focal length f=....m

16. Find the focal length of liquid lens When a convex lens of focal length f_1 is in contact with a concave lens of focal length f_2 then $1/F=1/f_1+1/f_2$ There fore $f_2=Ff_1/f_1-F$

observations&calculations focal length of convex lens

no	Distance of th	e pointer from	Average	
	Top surface of lens	Bottom surface of lens	distance(cm)	
1		NAL AND AND	AND A DECK	

Focal length of convex lens=.....m Focal length of combination

no	Distance of the pointer from		Average
	Top surface of lens	Bottom surface of lens	distance(cm)

Focal length of combination, F=....mFocal length of liquid lens, $f_2=Ff_1/f_1-F$

17. Plot the i-d curve of the given prism. From the graph find the angle of minimum deviation

Refractive index of material of prism is given

by,n=sin(A+D)/2 sinA/2

A=angle of prism,D=angle of minimum deviation

observations&calculations:Angle of prism=.....

no	Angle of incidence (i)	Angle of deviation(d)

 $= \sin(A+D)/2 = \sin(A/2)$

18. Draw path of ray through a prism for five angles of incidence. Find refractive index. (A=60⁰) find the angle of minimum deviation Refractive index of material of prism is given by,n=sin(A+D)/2

sinA/2

A=angle of prism,D=angle of minimum deviation

observations&calculations:Angle of prism=.....

no	Angle of incidence (i)	Angle of deviation(d)

n=sin(A+D)/2 sinA/2