Example 43

Consider the line joining the points P(-4, 1) and Q(0, 5).

- i. Write the coordinates of the midpoint of PQ.
- ii. Find the equation of the line passing through the midpoint of PQ and parallel to the line (September 2013)
- 3x 4y + 2 = 0.

Solution

i. Midpoint of PQ =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-4 + 0}{2}, \frac{1 + 5}{2}\right) = (-2, 3)$$

ii. Equation of the line parallel to the given line is 3x - 4y + K = 0. Since it passes through (-2, 3) we get 3(-2) - 4(3) + K = 0 $\cdot K = 18$ Equation of the line is 3x - 4y + 18 = 0

Example 44

Find the point of intersection of the lines 2x + y - 3 = 0, 3x - y - 2 = 0i

0

Find the equation of the line passing through the above point of intersection and parallel to ii. (March 2012) the line x + y + 1 = 0.

Solution

2x + y = 3(1) i. 3x - y = 2(2) $(1) + (2) \rightarrow 5x = 5 \qquad \therefore x = 1$ From (1), we get y = 1 \therefore Point of intersection is (1,1) Equation of the line parallel to x + y + 1 = 0 is x + y + k = 0ii. Since this line passes through (1,1)we get 1 + 1 + k = 0 $\therefore k = -2$

Equation of the line is
$$x + y - 2 =$$

Example 45

mple 45 Find equation of the line perpendicular to the line x - 7y + 5 = 0 and having x - intercept₃ (NCERI)

Solution

Equation of the perpendicular line is -7x - y + K = 0::K = 21

Since it passes through (3, 0) we get -7(3) - 0 + K = 0.

Equation of the required line is -7x - y + 21 = 0 or 7x + y - 21 = 0

Example 46

Find the equation of a line perpendicular to the line x - 2y + 3 = 0 and passing through the point (NCERT, March 2013) (1, -2).

Solution

Equation of a line perpendicular to the line

$$x - 2y + 3 = 0$$
 is $2x + y + k = 0$ (1)

Since (1) passes through (1, -2),

we get
$$2(1) + (-2) + k = 0 \implies k = 0$$

 \therefore The required line is 2x + y = 0

Example 47

Consider the straight line 3x + 4y + 8 = 0

- i. What is the slope of the line which is perpendicular to the given line?
- ii. If the perpendicular line passes through (2,3), form its equation.
- iii. Find the foot of the perpendicular drawn from (2,3) to the given line. (March 2011)

Solution

i.

Slope of the given line, $m = \frac{-\text{Coefficient of } x}{\text{Coefficient of } y} = \frac{-3}{4}$

Slope of the line perpendicular to the

given line = $\frac{-1}{m} = \frac{4}{3}$

Equation of the perpendicular line ii. passing through (2,3) is

$$y - y_1 = m (x - x_1)$$

$$y - 3 = \frac{4}{3} (x - 2)$$

$$3y - 9 = 4x - 8$$

$$4x - 3y + 1 = 0$$

STUDY TIP

Equation of the line parallel to the line ax + by + c = 0 and passing through (x_1, y_1) is $a(x - x_1) + b(y - y_1) = 0$ Equation of the line perpendicular to the line ax + by + c = 0 and passing through (x_1, y_1) is $b(x - x_1) - a(y - y_1) = 0$

Another Method (ii)

The equation of a line perpendicular to ax + by + c = 0 and passing through (x_1, y_1) is $b(x - x_1) - a(y - y_1) = 0$

Hence the equation of the line perpendicular to 3x + 4y + 8 = 0 and passing through (2,3) is 4(x-2) - 3(y-3) = 0

4x - 3y + 1 = 0

The foot of any point on the perpendicular line to the line 3x + 4y + 8 = 0 is the point of intersection of the line 3x + 4y + 8 = 0 and its perpendicular. iii.

The point of intersection is obtained by solving

3x + 4y + 8 = 0 and

$$4x - 3y + 1 = 0$$

Solving, we get $x = \frac{-28}{25}$ and $y = \frac{-29}{25}$

: Foot of the perpendicular from (2,3) to the line 3x + 4y + 8 = 0 is $\left(\frac{-28}{25}, \frac{-29}{25}\right)$

Example 48

Consider the points A(-2, -3) and B(1, 6).

i. Find the equation of the line passing through A and B.

ii. Find the equation of the line passing through (2, 1) and perpendicular to AB. (June 2008) iii. Find the foot of the above perpendicular to AB.

Solution

Equation of AB is $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ i. i.e., $\frac{y-3}{6-3} = \frac{x-2}{1-3}$ or $\frac{y+3}{9} = \frac{x+2}{3}$

or y + 3 = 3(x + 2) or y - 3x - 3 = 0 or -3x + y - 3 = 0

- ii. The equation of a line passing through (x_1, y_1) and perpendicular to ax + by + c = 0 is $b(x - x_1) - a(y - y_1) = 0$
 - : Equation of the line passing through (2,1) and perpendicular to -3x + y 3 = 0 is 1(x-2) + 3(y-1) = 0

$$x + 3y - 5 = 0$$

iii. The foot of any point on the perpendicular to line AB is the point of their intersection.

:. Solving -3x + y - 3 = 0 and x + 3y - 5 = 0, we get

 $x = \frac{-2}{5}$ and $y = \frac{9}{5}$

Hence the foot of the perpendicular to AB is $\left(\frac{-2}{5}, \frac{9}{5}\right)$

Example 49

Consider the points A(2, 2) and B(5, 3).

- i. Find the slope of the line through the points A and B.
- ii. Find the equation of the line passing through the points A and B.

iii. Find the image of the point (1, 2) in the line through A and B. (August 2009, NCERT Solution

i. Slope of AB =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{5 - 2} = \frac{1}{3}$$

ii. Since the slope of line AB is $\frac{1}{3}$ and (2, 2) is a point on AB

: Equation of the line AB is $y - 2 = \frac{1}{2}(x - 2)$

i.e.,
$$3y-6 = x-2 \implies 3y-x-4 = 0 \text{ or } x-3y+4 = 0$$

iii. Let P(1, 2) be the given point and Q(h, k) be the image of P w.r.t. the line AB.Let PQ intersect AB at M.

Hence $PQ \perp AB$ and M is the midpoint of PQ. Slope of $AB = \frac{1}{3}$ from (i) \therefore Slope of $PQ = \frac{-1}{\text{Slope of } AB} = \frac{-1}{\left(\frac{1}{3}\right)} = -3$ Again slope of $PQ = \frac{k-2}{h-1}$ Hence we get $\frac{k-2}{h-1} = -3$ or 3h + k - 5 = 0(1) Coordinate of M = Midpoint of PQ = $\left(\frac{h+1}{2}, \frac{k+2}{2}\right)$

The equation of the line AB is x - 3y + 4 = 0 from (ii) Since M is a point on the line AB

we get $\frac{h+1}{2} - 3\left(\frac{k+2}{2}\right) + 4 = 0$ h+1 - 3k - 6 + 8 = 0or h - 3k + 3 = 0(2)

Solving (1) and (2), we get $h = \frac{6}{5}, k = \frac{7}{5}$ \therefore The image of (1, 2) w.r.t. line AB = $\left(\frac{6}{5}, \frac{7}{5}\right)$ **10.5 DISTANCE OF A POINT FROM A I** INE Let Ax + By + C = 0 be the equation of the line *l* intersecting the x - axis at S and y - axis at R. The x - intercept of the line is $\frac{-C}{A}$ and y - intercept of the line is $\frac{-C}{B}$ \therefore S is the point $\left(\frac{-C}{A}, 0\right)$ and R is the point $\left(0, \frac{-C}{B}\right)$. Let $P(x_1, y_1)$ be a point in the xy-plane. Draw PN \perp RS. 0 Area of $\Delta PSR = \frac{1}{2} \left| x_1 \left(0 + \frac{C}{B} \right) + \left(\frac{-C}{A} \right) \left(\frac{-C}{B} - y_1 \right) + 0(y_1 - 0) \right|$ Fig. 10.28 Ax + By + C = 0Area of $\Delta PSR = \frac{1}{2}$ RS. $PN = \frac{1}{2}\sqrt{\frac{C^2}{A^2} + \frac{C^2}{B^2}}$. $PN = \left|\frac{C}{2AB}\right|\sqrt{A^2 + B^2}$. PN(2) From (1) and (2) we get, $\frac{C}{2AB} \left| Ax_1 + By_1 + C \right| = \frac{C}{2AB} \sqrt{A^2 + B^2} PN$ $\therefore PN = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + D^2}}$

Example 50

Find the distance of the point (3, -3) from the line 3x - 4y - 26 = 0(March 2009) Solution

Distance of the point (x_1, y_1) from the line $Ax_1 + By_1 + C = 0$ is $\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

Distance of the point (3, -3) from the line 3x - 4y - 26 = 0

$$=\frac{\left|3(3)-4(-3)-26\right|}{\sqrt{(3)^2+(4)^2}}=\frac{\left|-5\right|}{\sqrt{25}}=\frac{.5}{.5}=1 \text{ unit}$$

Example 51

Find the distance of the line 3x - 4y + 2 = 0(March 2015) from the origin.

Solution

Perpendicular distance from origin to line

$$=\frac{|c|}{\sqrt{A^2+B^2}}=\frac{|2|}{\sqrt{3^2+(-4)^2}}=\frac{2}{5}$$

Example 52

Consider the line 3x - 4y + 2 = 0 and the point (2, -3)

Find the distance of the point from the line. i.

Find the image of the point about the line. ii.

Solution

Distance of the point (2, -3) from the line 3x - 4y + 2 = 0 is i.

$$= \left| \frac{6+12+2}{\sqrt{9+16}} \right| = \frac{20}{5} = 4$$

(October 2011)

Let P (2, -3) be the given point and Q (h, k) be the image of P with respect to the line ii. 3x - 4y + 2 = 0

Slope of the given line is
$$\frac{3}{4}$$

Slope of PQ = $\frac{k+3}{k-2}$

Since PQ is perpendicular to the given line, the product of their slopes =

i.e,
$$\frac{3}{4} \times \frac{(k+3)}{(h-2)} = -1 \implies 3k+9 = -4h+8$$

 $4h+3k = -1$ (1)

STUDY TIP The length of the perpendicular from the origin to the line Ax + By + C = 0 is $\frac{|C|}{\sqrt{A^2 + B^2}}$

Let M be the midpoint of PQ.

$$\therefore M \text{ is } \left(\frac{h+2}{2}, \frac{k-3}{2}\right)$$

M lies on the line $3x - 4y + 2 = 0$
i.e., $3\left(\frac{h+2}{2}\right) - 4\left(\frac{k-3}{2}\right) + 2 = 0$
 $3h + 6 - 4k + 12 + 4 = 0$
 $3h - 4k = -22$ (2)
Solving (1) and (2), we get $h = \frac{-14}{5}$, $k = \frac{17}{5}$
 \therefore The image of (2, -3) with respect to the line $3x - 4y + 2 = 0$ is $\left(\frac{-14}{5}, \frac{17}{5}\right)$

10.5.1 Distance between two parallel lines

We know that $Ax + By + C_1 = 0$ and $Ax + By + C_2 = 0$ are the equations of two parallel lines.

Let $P(x_1, y_1)$ be a point on the line $Ax + By + C_1 = 0$

 $\therefore Ax_1 + By_1 + C_1 = 0$ $Ax_1 + By_1 = -C_1$ (1)

Draw PM perpendicular to the line $Ax + By + C_2 = 0$

PM is the perpendicular distance from $P(x_1, y_1)$ to the line $Ax + By + C_2 = 0$.

$$\therefore PM = \frac{|Ax_1 + By_1 + C_2|}{\sqrt{A^2 + B^2}} = \frac{|-C_1 + C_2|}{\sqrt{A^2 + B^2}} \quad from (1)$$
$$\therefore PM = \frac{|C_2 - C_1|}{\sqrt{A^2 + B^2}}$$

But PM is the distance between the parallel lines.

The distance between the lines $Ax + By + C_1 = 0$ and $Ax + By + C_2 = 0$ is

Example 53

Find the distance between the parallel lines 心理剂 医内门的 (NCERT) 3x - 4y + 5 = 0 and 3x - 4y + 7 = 0

5'5)

Solution

The given equations are 3x - 4y + 5 = 0 (1) and 3x - 4y + 7 = 0 (2) Here $C_1 = 5$ and $C_2 = 7$, A = 3, B = -4

Distance
$$d = \frac{|C_2 - C_1|}{\sqrt{A^2 + B^2}} = \frac{|7 - 5|}{\sqrt{(3)^2 + (-4)^2}} = \frac{|2|}{\sqrt{9 + 16}} = \frac{2}{5}$$

Example 54

i. Reduce the equation 3x + 4y - 12 = 0 into intercept form.

ii. Find the distance of the above line from the origin.

iii. Find the distance of the above line from the line 6x + 8y - 18 = 0. (March 2010)

Solution

i. The equation of the line is 3x + 4y - 12 = 0i.e., 3x + 4y = 12Dividing by 12, we get $\frac{3x}{12} + \frac{4y}{12} = \frac{12}{12}$ or $\frac{x}{4} + \frac{y}{3} = 1$, which is in intercept form. ii. Distance of the line 3x + 4y - 12 = 0 from the origin $= \frac{|C|}{\sqrt{A^2 + B^2}} = \frac{|-12|}{\sqrt{3^2 + 4^2}} = \frac{12}{5}$.

iii. The lines 3x + 4y - 12 = 0 and 6x + 8y - 18 = 0 are parallel, since the ratio of the x-coordinates is equal to the ratio of the y-coordinates.

Let 3x + 4y - 12 = 0(1) 6x + 8y - 18 = 0(2)

Multiplying (1) by 2, we get

 $6x + 8y - 24 = 0 \dots (3)$

Distance between lines (1) and (2) = Distance between lines (2) and (3)

$$= \frac{|C_2 - C_1|}{\sqrt{A^2 + B^2}} = \frac{|-24 - 18|}{\sqrt{6^2 + 8^2}} = \frac{|-6|}{\sqrt{100}} = \frac{6}{10} = \frac{3}{5}$$