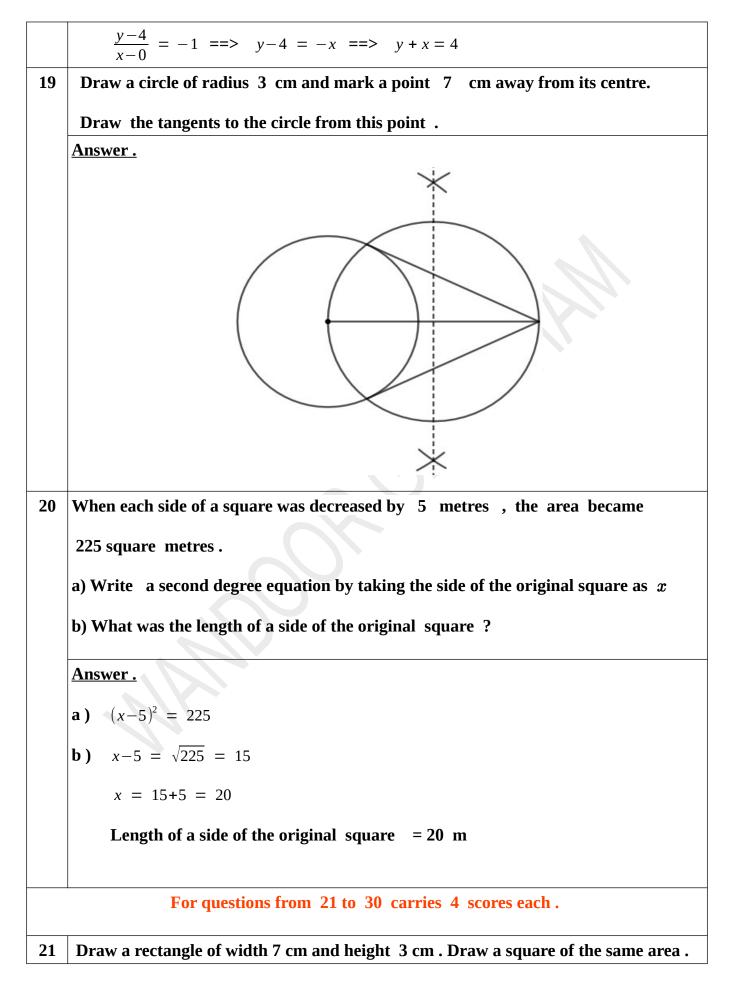
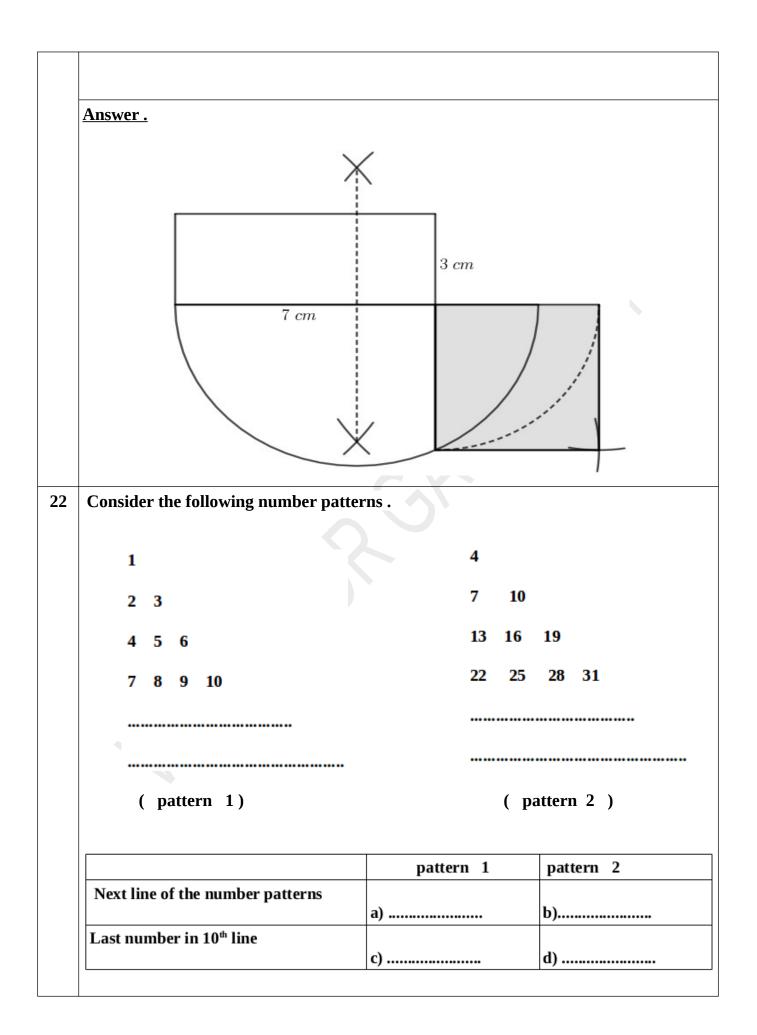

WANDOOR GANITHAM - S S L C MODEL QUESTION PAPER 2021

PREE4

DETAILED ANSWER KEY - QUESTION PAPER 4

Qn no.	Key
	For questions from 1 to 5 one score each .
1	What is the common difference of the arithmetic sequence 6 , 10 , 14 ?
	(6 , 4 , 2 , 8)
	Answer.
	4
2	In the figure O is the centre of the circle and $< AOB = 100^{\circ}$.
	What is the measure of < ACB ?
	$(50^{\circ}, 80^{\circ}, 130^{\circ}, 200^{\circ})$
	Answer.
	50°
3	If $\sin x^0 = \cos x^0$, find the value of x ?
	(0,30,45,60)
	Answer.
	45
4	A line is drawn through the point $(3, 2)$ parallel to the x-axis . If $(5, k)$ is a point
	on this line , what is the value of \mathbf{k} ?
	(0,1,2,3)
	<u>Answer</u> .
	2
5	Which among the following is added to $x^2 + 36$ to get a perfect square ?
	(6x, 18x, 12x, 36x)
	<u>Answer</u> .
	12 <i>x</i>

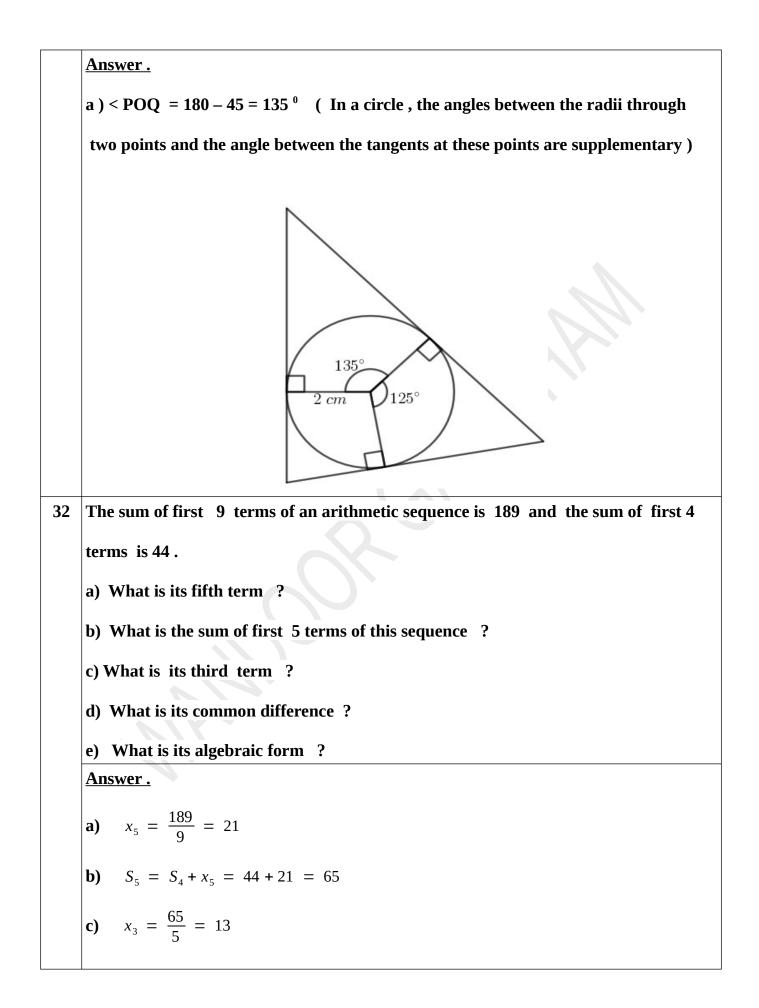

	For questions from 6 to 10 carries 2 scores each .
6	Algebraic form of an arithmetic sequence is 4 n - 1 .
	a) What is its common difference ?
	b) What is its first term ?
	Answer.
	a) Common difference = 4
	b) First term = 4 - 1 = 3
7	Write x^2-64 as the product of two first degree polynomials ?
	Answer.
	a) $x^2-64 = x^2-8^2 = (x+8)(x-8)$
8	In the figure PQ is the diameter of the semicircle
	The measures of < R , < S and < T are in arithmetic
	sequence $. < T = 60^{\circ}$
	a) What is the measure of $< S$? P Q
	b) What is the measure of < R ?
	Answer.
	a) $< S = 90^{0}$ (common difference = $90 - 60 = 30$)
	b) < R = 90 + 30 = 120 $^{\circ}$
9	The base radius of a cone is 12 centimetres and its slant height is 20 centimetres .
	a) What is its height ?
	b) Compute its volume ?
	Answer.
	a) $r^2 + h^2 = l^2 \implies 12^2 + h^2 = 20^2 \implies 144 + h^2 = 400 \implies h^2 = 400 - 144 = 256 \implies .$
	$h = \sqrt{256} = 16 cm$

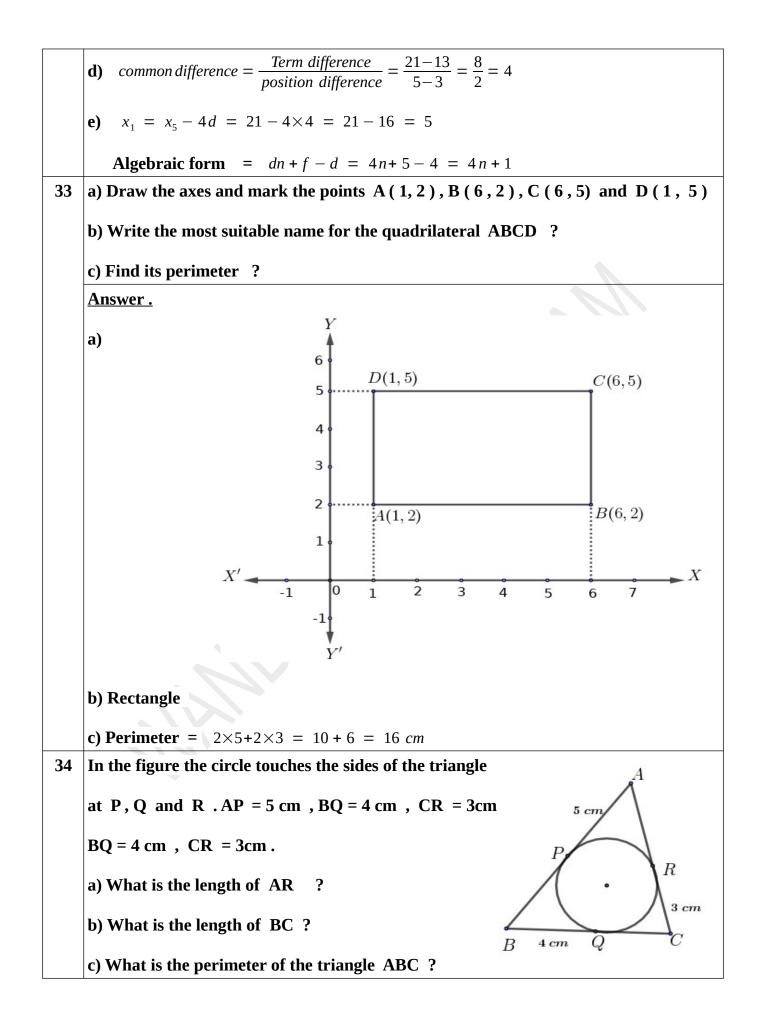


12	Find the following sums .
	a) $1 + 2 + 3 + 4 + 5 + \ldots + 40$
	b) 2 + 4 + 6 + 8 + 10 + + 80
	c) $1 + 3 + 5 + 7 + 9 + \ldots + 79$
	<u>Answer</u> .
	a) 1 + 2 + 3 + 4 + 5 + + 40 = $\frac{40 \times 41}{2}$ = 820
	b) 2 + 4 + 6 + 8 + 10 + + 80 = $2 \times 820 = 1640$
	c) $1 + 3 + 5 + 7 + 9 + \dots + 79 = 1640 - 40 = 1600$
13	Consider the polynomial $p(x)=x^2-5x+4$
	a) Find $p(1)$?
	b) Check whether $x-4$ is a factor of $p(x)$?
	c) Write $p(x)$ as the product of two first degree polynomials ?
	<u>Answer</u> .
	a) $p(1)=1^2-5\times 1+4=1-5+4=0$
	b) $p(4)=4^2-5\times4+4=16-20+4=0 => x-4$ is a factor of $p(x)$
	c) $(x-1)(x-4)$
14	A dice with faces numbered from 1 to 6 is rolled .
	a) What is the probability of getting an even number ?
	b) What is the probability of getting an odd number ?
	c) What is the probability of getting a prime number ?
	<u>Answer</u> .
	a) $\frac{Number of favourable results}{Total number of results} = \frac{3}{6} = \frac{1}{2}$
	(Total results = $1, 2, 3, 4, 5, 6$, favourable results = $2, 4, 6$)
	b) $\frac{Number of favourable results}{Total number of results} = \frac{3}{6} = \frac{1}{2}$ (favourable results = 1, 3, 5)

15	The	number of pictures drawn by the arts club members of a school are given
	below	v. 15,39,30,42,27, 33,24,18,36,21
	a) Wl	hat is the mean of the number of pictures ?
	b) W	hat is the median of the number of pictures ?
	<u>Answ</u>	<u>ver.</u>
	a)	$Mean = \frac{15+39+30+42+27+33+24+18+36+21}{10} = \frac{285}{10} = 28.5$
	b)	15 , 18 , 21 , 24 , 27 , 30 , 33 , 36 , 39 , 42
		Median = $\frac{27+30}{2} = \frac{57}{2} = 28.5$
		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
16	Two	
16		children stand on either side of a flag post of height 50 meters . First child sees top of the flag post at an elevation of 45° and the second child sees it at an
16	the t	children stand on either side of a flag post of height 50 meters . First child see
16	the t	children stand on either side of a flag post of height 50 meters . First child sees to pof the flag post at an elevation of 45° and the second child sees it at an
16	the t eleva a) Di	children stand on either side of a flag post of height 50 meters . First child see top of the flag post at an elevation of 45° and the second child sees it at an tion of 30°
16	the t eleva a) Di b) W	children stand on either side of a flag post of height 50 meters . First child sees cop of the flag post at an elevation of 45° and the second child sees it at an tion of 30° raw a rough figure based on the given details?
16	the t eleva a) Di b) W	children stand on either side of a flag post of height 50 meters . First child sees top of the flag post at an elevation of 45° and the second child sees it at an tion of 30° raw a rough figure based on the given details? hat is the distance between the flag post and the first child ? hat is the distance between the flag post and the second child ?
16	the t eleva a) Di b) W c) Wl	children stand on either side of a flag post of height 50 meters. First child see top of the flag post at an elevation of 45° and the second child sees it at an tion of 30° raw a rough figure based on the given details? hat is the distance between the flag post and the first child ? hat is the distance between the flag post and the second child ? <u>ver .</u> 50 m
16	the t eleva a) Dr b) W c) W <u>Answ</u>	children stand on either side of a flag post of height 50 meters. First child sees top of the flag post at an elevation of 45° and the second child sees it at an tion of 30° raw a rough figure based on the given details? hat is the distance between the flag post and the first child ? hat is the distance between the flag post and the second child ? <u>ver .</u>

17	The base radii of two cones are in the ratio 3:4 and their slant heights are in the
	ratio 5:6
	a) If the radius of the first cone is taken as $3 r$, what will be the radius of the second
	cone ?
	b) What is the ratio of their curved surface areas ?
	c) If the curved surface area of the first cone is 300π square centimetres , what
	will be the curved surface area of the second cone ?
	<u>Answer</u> .
	a) Radius of the second cone = 4 r
	b) $\pi \times 3r \times 5l$: $\pi \times 4r \times 6l$ = $15 \pi l$: $24 \pi l$ = 15 : $24 = 5$: 8
	c) Curved surface area of the second cone = $\frac{8}{5} \times 300 \pi = 480 \pi cm^2$
18	Consider the line passing through the points A and B X'
	in the picture .
	a) What is the slope of the line ? $(0,4)^{(0,4)}$
	b) Write the coordinates of another point on this line
	c) If (x, y) is point on this line, prove that $x + y = 4$ (4,0)
	Answer .
	a) Slope = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 4}{4 - 0} = \frac{-4}{4} = -1$
	b) $\left(\frac{0+4}{2}, \frac{4+0}{2}\right) = \left(\frac{4}{2}, \frac{4}{2}\right) = (2, 2)$ or any point (x, y) with $x + y = 4$
	c) $\frac{y-0}{x-4} = -1 \implies y = -1(x-4) \implies y = -x+4 \implies y+x=4$
	or


	Answer .	
	pattern 1	pattern 2
	a) 11 12 13 14 15	b) 34 37 40 43 46
	c) $\frac{10 \times 11}{2} = 55$	d) $3 \times 55 + 1 = 165 + 1 = 166$
23	A bag contains 25 white and 35 green b	beads . Take one bead from this
	a) What is the probability of getting a gree	en bead ?
	b) What is the probability of getting a whi	te bead ?
	c) How many more white beads are to be	put in the box to make the probability of
	getting a green bead is $\frac{5}{9}$?	
	<u>Answer .</u>	
	a) Probability of getting a green bead =	$\frac{Number of favourable results}{Total number of results} = \frac{35}{60}$
	b) Probability of getting a white bead =	$\frac{Number of favourable results}{Total number of results} = \frac{25}{60}$
	c) $\frac{35}{x} = \frac{5}{9} = x = 63$	
	Number of white beads more added =	63 - 60 = 3
24	A line is drawn by joining the points A(3	,6) and B(7,6) .
	a) What are the coordinates of the midpoir	nt of the line ?
	b) Write the coordinates of another two po	ints on this line ?
	c) What are the coordinates of the point on	the x-axis which is equidistant from the
	ends of the line AB ?	


	Answer.
	a) $(\frac{3+7}{2}, \frac{6+6}{2}) = (\frac{10}{2}, \frac{12}{2}) = (5, 6)$
	b) $(5, 1)$, $(5, 2)$ or any two pints with x coordinate 5.
	(Since the y coordinates of A and B are equal , the line AB is parallel to the x-axis .
	So the perpendicular bisector of AB is parallel to the y- axis $\)$
	c) (5,0)
	(Any point on the perpendicular bisector of a line is equidistant from its ends)
25	Consider the polynomial $p(x)=x^2+9x+8$
	a) Find $p(1)$?
	b) Write a factor of $p(x)-p(1)$?
	c) Write $p(x)-p(1)$ as the product of two first degree polynomials ?
	<u>Answer</u> .
	a) $p(1) = 1^2 + 9 \times 1 + 8 = 1 + 9 + 8 = 18$
	b) $x - 1$
	c) $p(x)-p(1) = x^2 + 9x + 8 - 18 = x^2 + 9x - 10$
	$x^{2} + 9x - 10 = (x - 1)(x + 10)$
26	In triangle <i>PQR</i> , $ and the length of the sides P$
	QR,PQ,PR are a,b,c respectively.
	a) Which among the following is $\tan x^0$?
	$\left(\begin{array}{c} \frac{b}{c} \\ \frac{b}{c} \end{array}, \begin{array}{c} \frac{a}{c} \\ \frac{b}{a} \\ \frac{b}{a} \end{array}, \begin{array}{c} \frac{a}{b} \\ \frac{b}{b} \end{array}\right)$
	b) Similarly write $\sin x^0$ and $\cos x^0$ from this triangle ?
	c) Prove that $\frac{\sin x^0}{\cos x^0} = \tan x^0$?

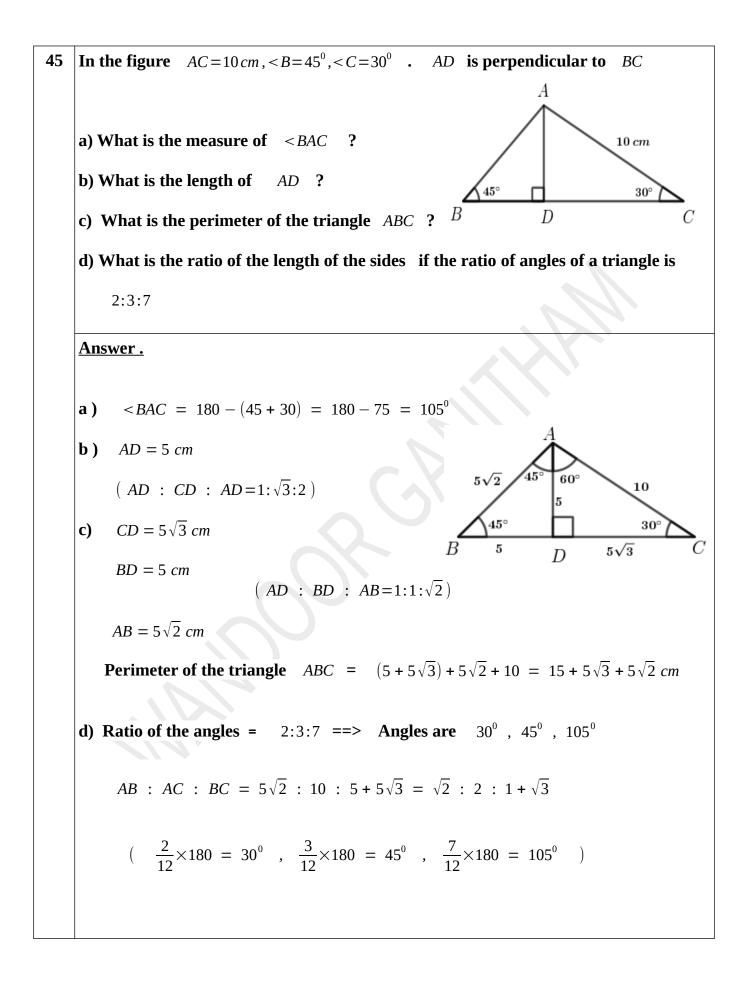
	Answer .			
	a) $\tan x^0 = \frac{b}{a}$			
	b) $\sin x^0 = \frac{b}{c}$, $\cos x^0 =$	$\frac{a}{c}$		
	c) $\frac{\sin x^0}{\cos x^0} = \frac{b}{c} \div \frac{a}{c} = \frac{b}{c} \times \frac{a}{a}$	$\frac{b}{a} = \frac{b}{a} = \tan x^0$		
27	In the figure line OA make	es an angle 45°	Y	
	with the x-axis .			A
	a) What are the coordinates	of O?		^{5°} ► X
	b)What is the slope of the lin	e OA ?		
	c) Write the coordinates of a	nother two points	on Y'	
	this line other than the origin	1 ?		
	Answer.			
	a) (0,0)			
	b) Slope = $\tan 45^{\circ} = 1$			
	c) (1,1), (2,2) or a	ny two points (x	, y) with x = y	
28	Workers in a factory are son	ted according to	their daily wage in the table	below .
	Daily	wage (Rs)	Number of workers	
		900	5	
		1000	7	
		1250	10	
		1500	11	
		1750	8	
		2000	6	

	a) If the w	orkers are arranged in increa	sing order of daily wage ,what is	the daily
	wage of	f the worker at the 23 rd positi	on ?	
	b) If the w	vorkers are arranged in incre	asing order of daily wages , the dai	lv wage
		_		-)
	of the v	worker at what position is tak	en as the median ?	
	c) Find the	e median daily wage ?		
	Answer.			
		Daily wage	Number of workers	
		Upto 900	5	
		Upto 1000	12	
		Upto 1250	22	_
		Upto 1500	33	_
		Upto 1750	41	_
		Upto 2000	47	
	a) <i>Rs</i> 1 b) $\frac{N+1}{2}$ c) Median	500 = $\frac{47+1}{1} = \frac{48}{8} = 24$ = Rs 1500		
29	A sector o	f arc length 10π centimetre	s is rolled up into a cone of slan	t height
	15 centim	etres .		
	a) What is	the radius of the sector ?		
	b) What is	s the base perimeter of the con	ne ?	
	c) What is	the base radius of the cone ?		
	d) What is	the central angle of the sector	• ?	
	1			

	Answer .
	a) Radius of the sector = Slant height of the cone = 15 cm
	b) Base perimeter of the cone = Arc length of the sector = $10 \pi cm$
	c) Base radius of the cone = $\frac{10 \pi}{2 \pi} = 5 cm$
	d) $\frac{x}{360} = \frac{5}{15} = x = \frac{5 \times 360}{15} = 120^{\circ}$
	Central angle of the sector = 120°
30	The sum of the square of a number and 8 times that number is 240 .
	a) Write a second degree equation by taking the number as $oldsymbol{x}$
	b) Find the number ?
	Answer.
	a) $x^2 + 8x = 240$
	b) $x^2 + 8x + 4^2 = 240 + 4^2 \implies (x + 4)^2 = 256$
	$x + 4 = \sqrt{256} = 16 = x = 16 - 4 = 12$
	Number = 12
	For questions from 31 to 45 carries 5 scores each .
31	In the figure O is the centre of the circle . The circle A
	touches the sides of the triangle at the points P , Q and R P
	< ABC = 45 ^o
	a) What is the measure of $< POQ$?
	b) Draw a circle of radius 3 cm . Draw a triangle of Q
	angles 45° , 55° , 80° with all its sides touching this circle

a) $AR = AP = 5 \ cm$ (The tangents to a circle from a point are of the same leng b) $BP = BQ = 4 \ cm$, $CQ = CR = 3 \ cm$ $BC = 4 + 3 = 7 \ cm$ c) Perimeter of the triangle ABC = $AB + BC + AC = 9 + 7 + 8 = 24 \ cm$ ($AB = 5 + 4 = 9 \ cm$, $AC = 5 + 3 = 8 \ cm$) 35 In the figure ABCD is a parallelogram and its area is 40 square centimetres . a) What are the coordinates of O ? b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer. a) (0,0) b) $AB = 8 \ cm$ $OD = \frac{40}{8} = 5 \ cm$ (Area = AB x OD	çth)
BC = 4 + 3 = 7 cm c) Perimeter of the triangle ABC = $AB + BC + AC = 9 + 7 + 8 = 24$ cm ($AB = 5 + 4 = 9$ cm , $AC = 5 + 3 = 8$ cm) 35 In the figure ABCD is a parallelogram and its area is 40 square centimetres . a) What are the coordinates of O ? b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer. a) (0,0) b) $AB = 8$ cm	
c) Perimeter of the triangle ABC = $AB + BC + AC = 9 + 7 + 8 = 24 \ cm$ ($AB = 5 + 4 = 9 \ cm$, $AC = 5 + 3 = 8 \ cm$) 35 In the figure ABCD is a parallelogram and its area is 40 square centimetres . a) What are the coordinates of O ? b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer. a) (0,0) b) $AB = 8 \ cm$	
(AB = 5 + 4 = 9 cm , AC = 5 + 3 = 8 cm) 35 In the figure ABCD is a parallelogram and its area is 40 square centimetres . a) What are the coordinates of O ? b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer . a) (0,0) b) AB = 8 cm	
35 In the figure ABCD is a parallelogram and its area is 40 square centimetres . a) What are the coordinates of O ? b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer. a) $(0, 0)$ b) $AB = 8 \ cm$	
and its area is 40 square centimetres . a) What are the coordinates of O ? b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer. a) $(0, 0)$ b) $AB = 8 \ cm$	
a) What are the coordinates of O ? b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer. a) $(0, 0)$ b) $AB = 8 \ cm$	
b) What are the lengths of AB and OD ? c) What are the coordinates of C and D ? Answer. a) $(0, 0)$ b) $AB = 8 \ cm$	
c) What are the coordinates of C and D ? Answer. a) $(0, 0)$ b) $AB = 8 \ cm$	\mathbf{z}^{C}
 c) What are the coordinates of C and D ? Answer . a) (0,0) b) AB = 8 cm 	
a) $(0, 0)$ b) $AB = 8 \ cm$	_ X
b) $AB = 8 \ cm$	
$OD = \frac{40}{8} = 5 \ cm \qquad (Area = AB \ x \ OD)$	
0)
c) Coordinates of $\mathbf{D} = (0, 5)$	
Coordinates of C = $(8, 5)$	
36 Consider the sequence of two digit numbers which leave a remainder 1 on divisi	ble
by 5	
a) What is its common difference ?	
b) What are the smallest and the largest numbers in this sequence ?	
c)How many two digit numbers are there which leave a remainder 1 on divisible	

Answer. a) Common difference = 5 b) Smallest number = 11 Largest number = 96 c) Algebraic form = $dn + f - d = 5n + 11 - 5 = 5n + 6$ d) $x_n = 96 ==> 5n + 6 = 96$ $5n = 96 - 6 = 90 ==> n = \frac{90}{5} = 18$
b) Smallest number = 11 Largest number = 96 c) Algebraic form = $dn + f - d = 5n + 11 - 5 = 5n + 6$ d) $x_n = 96 ==> 5n + 6 = 96$
Largest number = 96 c) Algebraic form = $dn + f - d = 5n + 11 - 5 = 5n + 6$ d) $x_n = 96 = => 5n + 6 = 96$
c) Algebraic form = $dn + f - d = 5n + 11 - 5 = 5n + 6$ d) $x_n = 96 = > 5n + 6 = 96$
d) $x_n = 96 = > 5n + 6 = 96$
$5n = 96 - 6 = 90 \implies n = \frac{90}{5} = 18$
37 In the figure midpoints of the sides of the
quadrilateral ABCD are P, Q, R and S?
a) What is the most suitable name of the $Q^{(8,5)}$
quadrilateral PQRS ?
b) What are the coordinates of S , B , C and D $P(7,2)$
Answer.
a) Parallelogram
b) Coordinates of S = $(7 + 4 - 8, 2 + 6 - 5) = (3, 3)$
c) Coordinates of $\mathbf{B} = (9, 3)$
Coordinates of $C = (7, 7)$
Coordinates of D = $(1, 5)$
38 The base radius and height of a solid metal cone are 5 centimetres and 12 centime
tres
a) What is its slant height ?
b) What is its surface area ?
c) If 10000 such cones are painted and cost of the painting is 10 rupees per square
metre , what will be the total cost ? (hint : $\pi = 3.14$)


Answer.
a)
$$r^{2} + h^{2} = l^{2} = => 5^{2} + 12^{2} = l^{2} ==> 25 + 144 = l^{2} ==> 25 + 144 = l^{2}$$

 $l^{2} = 169 ==> l = \sqrt{169} = 13 cm$
b) Surface area of a cone = $\pi r^{2} + \pi r l = \pi \times 5^{2} + \pi \times 5 \times 13 = 25 \pi + 65 \pi$
 $= 90 \pi cm^{2} = \frac{90 \pi}{10000} m^{2}$
c) Surface area of 10000 cones = $\frac{90 \pi}{10000} \times 10000 = 90 \pi m^{2}$
Total cost = $90 \pi \times 10 = 90 \times 3.14 \times 10 = Rs$ 2826
39 In the figure two circle intersect at C . PC is the
common tangent to both the circles.
AB = 5cm , PB = 4 cm , PD = 3 cm
a) What is the length of PA ?
b) What is the length of DE ?
Answer.
a) $PA = 4 + 5 = 9 cm$
b) $PA \times PB = PC^{2} ==> 9 \times 4 = PC^{2}$
 $PC = \sqrt{36} = 6 cm$
c) $PE \times PD = PC^{2} ==> PE \times 3 = 6^{2} ==> PE = \frac{36}{3} = 12 cm$
 $DE = PE - PD = 12 - 3 = 9 cm$

٦

40	If $x^2 - 10x + 16 = (x - a)(x - b)$
	a) Find a+b ?
	b) Find ab ?
	c) Write $x^2 - 10x + 16$ as the product of two first degree polynomials ?
	Answer .
	a) <i>a</i> + <i>b</i> =10
	b) $ab = 16$
	c) a=8 , b=2
	$x^2 - 10x + 16 = (x - 8)(x - 2)$
41	In the figure two chords AB and CD intersect at P.
	a) Which other angle is equal to the measure of $< CAB$? A P
	b) Which other angle is equal to the measure of < ABD ?
	c) Prove that $PA \times PB = PC \times PD$?
	<u>Answer</u> .
	A) $\angle CAB = \angle CDB$ (Angles made by an arc on its alternate arc are equal)
	b) $\angle ABD = \angle ACD$
	c) $\angle APC = \angle BPD$ (Opposite angles are equal)
	$\frac{PA}{PD} = \frac{PC}{PB}$ (Since the angles of the triangles APC and BPD are equal,
	their sides change in the same ratio)
	$PA \times PB = PC \times PD$

42	Look at the number pattern given below.
	1
	2 3 4
	5 6 7 8 9
	a) Write down the next two more lines of this pattern ?
	b) What is the last number in the 9 th line ?
	c) What is the first number in the 10 th line ?
	d) How many numbers are there in the 10 th line ?
	Answer .
	a) 10 11 12 13 14 15 16
	17 18 19 20 21 22 23 24 25
	b) $9^2 = 81$
	c) 82
	d) $2 \times 10 - 1 = 19$
43	In the figure O is the centre of the circle $. < ABC = 130^{\circ}$
	a) What is the measure of <aec ?<="" th=""></aec>
	b)What is the measure of < AOC ?
	c) What is the measure of < ADC ?
	d) What is the measure of $\langle ACD \rangle$? a) What is the measure of $\langle CAD \rangle$?
	e) What is the measure of < CAD ? B

	Answer.
	a) $\angle AEC = 50^{\circ}$ (ABCE is cyclic, opposite angles of a cyclic quadrilateral
	are supplementary)
	b) $\angle AOC = 2 \times 50 = 100^{\circ}$ ()
	c) $\angle ADC = 50^{\circ}$ (Angles made by an arc on its alternate arc are equal)
	d) $\angle ACD = 90^{\circ}$ (Angle on a semicircle)
	e) $\angle CAD = 40^{\circ}$ ($\angle ADC = 50^{\circ}$, $\angle ACD = 90^{\circ}$)
44	In the figure AB is the diameter of the semicircle . C
	P is a point on AB . The perpendicular drawn through P
	to AB meets the semicircle at C . PA is 10 centimetres $A P B$
	more than PB . PC = 12 centimetres .
	a) PA x PB =
	b) Write down a second degree equation by taking the length of PB as $oldsymbol{x}$.
	c) Compute the length of AB ?
	<u>Answer</u> .
	a) $PA \times PB = PC^2$
	b) $x(x+10) = 12^2 => x^2 + 10x = 144$
	$x^{2} + 10x + 5^{2} = 144 + 5^{2} = => (x + 5)^{2} = 144 + 25 = 169$
	$x + 5 = \sqrt{169} = 13$ ==> $x = 13 - 5 = 8 cm$
	$PB = 8 \ cm$, $PA = 10 + 8 = 18 \ cm$ ==> $AB = 18 + 8 = 26 \ cm$

