WANDOOR GANITHAM - S S L C MODEL QUESTION PAPER 2021

PREE4
DETAILED ANSWER KEY - QUESTION PAPER 4

Qn no.	Key
For questions from 1 to 5 one score each .	
1	What is the common difference of the arithmetic sequence $\mathbf{6 , 1 0 , 1 4}$ \qquad ? $(6,4,2,8)$
	Answer . 4
2	In the figure O is the centre of the circle and $\angle A O B=100{ }^{\circ}$. What is the measure of $<$ ACB ? $\left(50^{\circ}, \mathbf{8 0}^{\circ}, 130^{\circ}, 200^{\circ}\right)$
	Answer . 50°
3	If $\sin x^{0}=\cos x^{0}$,find the value of \mathbf{x} ? $(0,30,45,60)$
	Answer . 45
4	A line is drawn through the point $(3,2)$ parallel to the x -axis . If $(5, k)$ is a point on this line, what is the value of k ? $(0,1,2,3)$
	Answer . 2
5	Which among the following is added to $x^{2}+36$ to get a perfect square ? $(6 x, 18 x, 12 x, 36 x)$
	Answer . $12 x$

6 Algebraic form of an arithmetic sequence is 4n-1.
a) What is its common difference ?
b) What is its first term ?

Answer .
a) Common difference $=4$
b) First term $=4-1=3$

7 Write $x^{2}-64$ as the product of two first degree polynomials ?

Answer.
a) $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$

8 In the figure $P Q$ is the diameter of the semicircle.
The measures of $<\mathrm{R},<\mathrm{S}$ and $<\mathrm{T}$ are in arithmetic sequence. $<\mathbf{T}=60^{\circ}$
a) What is the measure of <S ?

b) What is the measure of $<\mathbf{R}$?

Answer .
a) $\angle \mathrm{S}=90^{\circ}$ (common difference $=90-60=30$)
b) $<\mathbf{R}=\mathbf{9 0}+\mathbf{3 0 = 1 2 0}{ }^{\circ}$

9 The base radius of a cone is 12 centimetres and its slant height is 20 centimetres
a) What is its height ?
b) Compute its volume ?

Answer .
a) $r^{2}+h^{2}=l^{2}==>12^{2}+h^{2}=20^{2}==>\quad 144+h^{2}=400==>h^{2}=400-144=256==.>$

$$
h=\sqrt{256}=16 \mathrm{~cm}
$$

	b) Volume $=\frac{1}{3} \times \pi \times r^{2} \times h=\frac{1}{3} \times \pi \times 12^{2} \times 16=768 \pi \mathrm{~cm}^{3}$
10	In the figure PQRS is a parallelogram . a) What are the coordinates of \mathbf{P} ? b) What are the coordinates of the point of intersection of its diagonals ?
	Answer . a) $(6+4-9,2+6-5)=(1,3)$ b) $\left(\frac{6+4}{2}, \frac{2+6}{2}\right)=\left(\frac{10}{2}, \frac{8}{2}\right)=(5,4)$ (Diagonals of a parallelogram bisect each other)
For questions from 11 to 20 carries 3 scores each .	
11	Draw a triangle of circumradius 4 cm and two of the angles 70° and $80{ }^{\circ}$.
	Answer.

12 Find the following sums .
a) $1+2+3+4+5+\ldots . \ldots \ldots+40$
b) $2+4+6+8+10+\ldots \ldots \ldots+80$
c) $1+3+5+7+9+\ldots \ldots \ldots+79$

Answer .
a) $1+2+3+4+5+\ldots \ldots \ldots+40=\frac{40 \times 41}{2}=820$
b) $2+4+6+8+\mathbf{1 0}+\ldots \ldots \ldots+80=2 \times 820=1640$
c) $1+3+5+7+9+\ldots \ldots \ldots+79=1640-40=1600$

13 Consider the polynomial $p(x)=x^{2}-5 x+4$
a) Find $p(1) \quad$?
b) Check whether $\quad x-4$ is a factor of $p(x)$?
c) Write $\quad p(x)$ as the product of two first degree polynomials ?

Answer .
a) $p(1)=1^{2}-5 \times 1+4=1-5+4=0$
b) $p(4)=4^{2}-5 \times 4+4=16-20+4=0==>\mathbf{x}-4$ is a factor $\mathbf{o f} \mathbf{p}(\mathbf{x})$
c) $(x-1)(x-4)$

14 A dice with faces numbered from 1 to 6 is rolled .
a) What is the probability of getting an even number ?
b) What is the probability of getting an odd number ?
c) What is the probability of getting a prime number ?

Answer .
a) $\frac{\text { Number of favourable results }}{\text { Total number of results }}=\frac{3}{6}=\frac{1}{2}$
(Total results = 1, $2,3,4,5,6$, favourable results = $2,4,6$)
b) $\frac{\text { Number of favourable results }}{\text { Totalnumber of results }}=\frac{3}{6}=\frac{1}{2}$
(favourable results $=1,3,5$)
c) $\frac{\text { Number of favourable results }}{\text { Total number of results }}=\frac{3}{6}=\frac{1}{2} \quad$ (favourable results $=2,3,5$)

15 The number of pictures drawn by the arts club members of a school are given below.

$$
15,39,30,42,27,33,24,18,36,21
$$

a) What is the mean of the number of pictures?
b) What is the median of the number of pictures?

Answer .
a) \quad Mean $=\frac{15+39+30+42+27+33+24+18+36+21}{10}=\frac{285}{10}=28.5$
b) $15,18,21,24,27,30,33,36,39,42$

Median $=\frac{27+30}{2}=\frac{57}{2}=28.5$
16 Two children stand on either side of a flag post of height 50 meters . First child sees the top of the flag post at an elevation of 45° and the second child sees it at an elevation of $3 \mathbf{0}^{\mathbf{0}}$
a) Draw a rough figure based on the given details?
b) What is the distance between the flag post and the first child ?
c) What is the distance between the flag post and the second child ?

Answer .
a)

b) Distance between the flag post and the first child $=50 \mathrm{~m}$

c) Distance between the flag post and the second child $=50 \sqrt{3} \mathrm{~m}$

17 The base radii of two cones are in the ratio $3: 4$ and their slant heights are in the ratio 5: 6
a) If the radius of the first cone is taken as $3 r$, what will be the radius of the second cone ?
b) What is the ratio of their curved surface areas ?
c) If the curved surface area of the first cone is 300π square centimetres, what will be the curved surface area of the second cone ?

Answer .
a) Radius of the second cone $=4 \mathrm{r}$
b) $\pi \times 3 r \times 5 l: \pi \times 4 r \times 6 l=15 \pi l: 24 \pi l=15: 24=5: 8$
c) Curved surface area of the second cone $=\frac{8}{5} \times 300 \pi=480 \pi \mathrm{~cm}^{2}$

18 Consider the line passing through the points A and B in the picture .
a) What is the slope of the line ?
b) Write the coordinates of another point on this line
c) If (x, y) is point on this line, prove that $x+y=4$

Answer.
a) Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-4}{4-0}=\frac{-4}{4}=-1$
b) $\left(\frac{0+4}{2}, \frac{4+0}{2}\right)=\left(\frac{4}{2}, \frac{4}{2}\right)=(2,2)$ or any point (x, y) with $x+y=4$
c) $\frac{y-0}{x-4}=-1==>\quad y=-1(x-4)==>\quad y=-x+4==>y+x=4$

	$\frac{y-4}{x-0}=-1==>\quad y-4=-x==>\quad y+x=4$
19	Draw a circle of radius 3 cm and mark a point 7 cm away from its centre. Draw the tangents to the circle from this point .
	Answer .
20	When each side of a square was decreased by 5 metres , the area became 225 square metres. a) Write a second degree equation by taking the side of the original square as \boldsymbol{x} b) What was the length of a side of the original square ?

Answer .

a) $(x-5)^{2}=225$
b) $x-5=\sqrt{225}=15$
$x=15+5=20$
Length of a side of the original square $=20 \mathrm{~m}$

For questions from 21 to 30 carries 4 scores each .

21 Draw a rectangle of width 7 cm and height $\mathbf{3 c m}$. Draw a square of the same area .

Answer .

22
Consider the following number patterns .

1
23

456
$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$
......................................
..
(pattern 1)

4
$7 \quad 10$
$\begin{array}{lll}13 & 16 & 19\end{array}$
$\begin{array}{llll}22 & 25 & 28 & 31\end{array}$
.....................................
\qquad
(pattern 2)

	pattern 1	pattern 2
Next line of the number patterns	a)	b).......................
Last number in $10^{\text {th }}$ line	c)	d)

	Answer .
	pattern 1 pattern 2
	a) $\begin{array}{llllllllll}11 & 12 & 13 & 14 & 15 & \text { b) } 34 & 37 & 40 & 43 & 46\end{array}$
	c) $\frac{10 \times 11}{2}=55$ d) $3 \times 55+1=165+1=166$
23	A bag contains 25 white and 35 green beads. Take one bead from this a) What is the probability of getting a green bead ? b) What is the probability of getting a white bead? c) How many more white beads are to be put in the box to make the probability of getting a green bead is $\frac{5}{9}$? Answer. a) Probability of getting a green bead $=\frac{\text { Number of favourable results }}{\text { Total number of results }}=\frac{35}{60}$ b) Probability of getting a white bead $=\frac{\text { Number of favourable results }}{\text { Total number of results }}=\frac{25}{60}$ c) $\frac{35}{x}=\frac{5}{9} \quad==>\quad x=63$ Number of white beads more added $=63-60=3$
24	A line is drawn by joining the points $A(3,6)$ and $B(7,6)$. a) What are the coordinates of the midpoint of the line ? b) Write the coordinates of another two points on this line ? c) What are the coordinates of the point on the x-axis which is equidistant from the ends of the line $A B$?

	Answer . a) $\left(\frac{3+7}{2}, \frac{6+6}{2}\right)=\left(\frac{10}{2}, \frac{12}{2}\right)=(5,6)$ b) $(5,1),(5,2)$ or any two pints with \mathbf{x} coordinate 5 . (Since the y coordinates of A and B are equal, the line $A B$ is parallel to the x-axis . So the perpendicular bisector of AB is parallel to the y -axis) c) $(5,0)$ (Any point on the perpendicular bisector of a line is equidistant from its ends)
25	Consider the polynomial $p(x)=x^{2}+9 x+8$ a) Find $p(1)$? b) Write a factor of $p(x)-p(1) \quad$? c) Write $p(x)-p(1)$ as the product of two first degree polynomials ?
	Answer . a) $p(1)=1^{2}+9 \times 1+8=1+9+8=18$ b) $x-1$ c) $\quad p(x)-p(1)=x^{2}+9 x+8-18=x^{2}+9 x-10$ $x^{2}+9 x-10=(x-1)(x+10)$
26	In triangle $P Q R, \quad<Q=90^{\circ},<R=x^{0}$ and the length of the sides $Q R, P Q, P R$ are a, b, c respectively. a) Which among the following is $\tan x^{0} \quad$? $\left(\frac{b}{c}, \frac{a}{c}, \frac{b}{a}, \frac{a}{b}\right)$ b) Similarly write $\sin x^{0}$ and $\cos x^{0}$ from this triangle ? c) Prove that $\frac{\sin x^{0}}{\cos x^{0}}=\tan x^{0} \quad$?

	a) $\tan x^{0}=\frac{b}{a}$ b) $\quad \sin x^{0}=\frac{b}{c} \quad, \quad \cos x^{0}=\frac{a}{c}$ c) $\frac{\sin x^{0}}{\cos x^{0}}=\frac{b}{c} \div \frac{a}{c}=\frac{b}{c} \times \frac{c}{a}=\frac{b}{a}=\tan x^{0}$		
27	In the figure line $O A$ makes an angle 45° with the x -axis . a) What are the coordinates of O ? b)What is the slope of the line $O A$? c) Write the coordinates of another two point this line other than the origin ?	X^{\prime} \bar{O}	
	Answer . a) $(0,0)$ b) Slope $=\tan 45^{\circ}=1$ c) $(1,1),(2,2)$ or any two points	$\text { with } x=y$	
28	Workers in a factory are sorted according to their daily wage in the table below .		
	Daily wage (Rs)	Number of workers	
	900	5	
	1000	7	
	1250	10	
	1500	11	
	1750	8	
	2000	6	

	Answer . a) Radius of the sector $=$ Slant height of the cone $=15 \mathrm{~cm}$ b) Base perimeter of the cone $=$ Arc length of the sector $=10 \pi \mathrm{~cm}$ c) Base radius of the cone $=\frac{10 \pi}{2 \pi}=5 \mathrm{~cm}$ d) $\frac{x}{360}=\frac{5}{15} \quad==>\quad x=\frac{5 \times 360}{15}=120^{\circ}$ Central angle of the sector $=120^{\circ}$
30	The sum of the square of a number and 8 times that number is 240 . a) Write a second degree equation by taking the number as \boldsymbol{x} b) Find the number ?
	Answer . a) $x^{2}+8 x=240$ b) $x^{2}+8 x+4^{2}=240+4^{2}==>(x+4)^{2}=256$ $\begin{aligned} & x+4=\sqrt{256}=16 \quad==>\quad x=16-4=12 \\ & \text { Number }=12 \end{aligned}$
	For questions from 31 to 45 carries 5 scores each .
31	In the figure \mathbf{O} is the centre of the circle. The circle touches the sides of the triangle at the points P, Q and R $<\mathrm{ABC}=45^{\circ}$ a) What is the measure of < POQ ? b) Draw a circle of radius $\mathbf{3} \mathbf{~ c m}$. Draw a triangle of angles $45^{\circ}, 55^{\circ}, 80^{\circ}$ with all its sides touching this circle

Answer .
a) $<\mathbf{P O Q}=180-45=135^{0}$ (In a circle, the angles between the radii through two points and the angle between the tangents at these points are supplementary)

32 The sum of first 9 terms of an arithmetic sequence is 189 and the sum of first 4 terms is 44 .
a) What is its fifth term ?
b) What is the sum of first 5 terms of this sequence ?
c) What is its third term ?
d) What is its common difference ?
e) What is its algebraic form ?

Answer .
a) $\quad x_{5}=\frac{189}{9}=21$
b) $S_{5}=S_{4}+x_{5}=44+21=65$
c) $x_{3}=\frac{65}{5}=13$

	d) common difference $=\frac{\text { Term difference }}{\text { position difference }}=\frac{21-13}{5-3}=\frac{8}{2}=4$ e) $x_{1}=x_{5}-4 d=21-4 \times 4=21-16=5$ Algebraic form $=d n+f-d=4 n+5-4=4 n+1$
33	a) Draw the axes and mark the points $A(1,2), B(6,2), C(6,5)$ and $D(1,5)$ b) Write the most suitable name for the quadrilateral ABCD ? c) Find its perimeter ?
	Answer . a) b) Rectangle c) Perimeter $=2 \times 5+2 \times 3=10+6=16 \mathrm{~cm}$
34	In the figure the circle touches the sides of the triangle at P, Q and $R . A P=5 \mathrm{~cm}, B Q=4 \mathrm{~cm}, C R=3 \mathrm{~cm}$ $B Q=4 \mathrm{~cm}, C R=3 \mathrm{~cm}$. a) What is the length of AR ? b) What is the length of BC ? c) What is the perimeter of the triangle ABC ?

	Answer . a) Common difference $=5$ b) Smallest number $=11$ Largest number $=96$ c) Algebraic form $=d n+f-d=5 n+11-5=5 n+6$ d) $x_{n}=96==>5 n+6=96$ $5 n=96-6=90==>n=\frac{90}{5}=18$
37	In the figure midpoints of the sides of the quadrilateral $A B C D$ are P, Q, R and S ? a) What is the most suitable name of the quadrilateral PQRS ? b) What are the coordinates of S , B , C and D Answer. a) Parallelogram b) Coordinates of $\mathbf{S}=(7+4-8,2+6-5)=(3,3)$ c) Coordinates of $\mathbf{B}=(9,3)$ Coordinates of $\mathbf{C}=(7,7)$ Coordinates of $\mathbf{D}=(1,5)$
38	The base radius and height of a solid metal cone are 5 centimetres and 12 centimetres a) What is its slant height ? b) What is its surface area ? c) If $\mathbf{1 0 0 0 0}$ such cones are painted and cost of the painting is $\mathbf{1 0}$ rupees per square metre, what will be the total cost ? (hint : $\quad \pi=3.14$)

Answer.

a) $r^{2}+h^{2}=l^{2}==>5^{2}+12^{2}=l^{2}==>25+144=l^{2}==>25+144=l^{2}$

$$
l^{2}=169 \quad==>\quad l=\sqrt{169}=13 \mathrm{~cm}
$$

b) Surface area of a cone $=\pi r^{2}+\pi r l=\pi \times 5^{2}+\pi \times 5 \times 13=25 \pi+65 \pi$

$$
=90 \pi \mathrm{~cm}^{2}=\frac{90 \pi}{10000} \mathrm{~m}^{2}
$$

c) Surface area of $\mathbf{1 0 0 0 0}$ cones $=\frac{90 \pi}{10000} \times 10000=90 \pi \mathrm{~m}^{2}$

$$
\text { Total cost }=90 \pi \times 10=90 \times 3.14 \times 10=\text { Rs } 2826
$$

In the figure two circle intersect at $C . P C$ is the common tangent to both the circles.

$$
\mathrm{AB}=5 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm}, \mathrm{PD}=3 \mathrm{~cm}
$$

a) What is the length of PA ?
b) What is the length of the tangent PC ?
c) What is the length of DE ?

Answer.
a) $P A=4+5=9 \mathrm{~cm}$
b) $P A \times P B=P C^{2} \quad==>\quad 9 \times 4=P C^{2}$

$$
P C=\sqrt{36}=6 \mathrm{~cm}
$$

c) $P E \times P D=P C^{2}==>P E \times 3=6^{2}==>\quad P E=\frac{36}{3}=12 \mathrm{~cm}$ $D E=P E-P D=12-3=9 \mathrm{~cm}$

40	If $x^{2}-10 x+16=(x-a)(x-b)$ a) Find $a+b$? b) Find $a b$? c) Write $x^{2}-10 x+16$ as the product of two first degree polynomials ?
	Answer . a) $a+b=10$ b) $a b=16$ c) $\quad a=8, b=2$ $x^{2}-10 x+16=(x-8)(x-2)$
41	In the figure two chords $A B$ and $C D$ intersect at P. a) Which other angle is equal to the measure of < CAB ? b) Which other angle is equal to the measure of < ABD ? c) Prove that $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$?
	Answer . A) $\angle C A B=\angle C D B \quad$ (Angles made by an arc on its alternate arc are equal) b) $\angle A B D=\angle A C D$ c) $\angle A P C=\angle B P D \quad$ (Opposite angles are equal) $\frac{P A}{P D}=\frac{P C}{P B} \quad$ (Since the angles of the triangles APC and BPD are equal , their sides change in the same ratio) $P A \times P B=P C \times P D$

42 Look at the number pattern given below.

$$
\begin{array}{rrrrr}
& & & 1 & \\
& & & & \\
& 2 & 3 & 4 & \\
5 & 6 & 7 & 8 & 9
\end{array}
$$

a) Write down the next two more lines of this pattern?
b) What is the last number in the $9^{\text {th }}$ line ?
c) What is the first number in the $10^{\text {th }}$ line ?
d) How many numbers are there in the $10{ }^{\text {th }}$ line?

Answer.
a) $\begin{array}{lllllll}10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
$\begin{array}{lllllllll}17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}$
b) $9^{2}=81$
c) 82
d) $2 \times 10-1=19$

43 In the figure \mathbf{O} is the centre of the circle . $\angle \mathrm{ABC}=130^{\circ}$
a) What is the measure of < AEC ?
b)What is the measure of <AOC ?
c) What is the measure of < ADC ?
d) What is the measure of < ACD ?
e) What is the measure of < CAD ?

45 In the figure $A C=10 \mathrm{~cm}, \angle B=45^{\circ}, \angle C=30^{\circ}$. $A D$ is perpendicular to $B C$
a) What is the measure of $<B A C$?
b) What is the length of $A D$?
c) What is the perimeter of the triangle $A B C$?

d) What is the ratio of the length of the sides if the ratio of angles of a triangle is 2:3:7

Answer .

a) $\angle B A C=180-(45+30)=180-75=105^{0}$
b) $A D=5 \mathrm{~cm}$

$$
(A D: C D: A D=1: \sqrt{3}: 2)
$$

c) $C D=5 \sqrt{3} \mathrm{~cm}$

$B D=5 \mathrm{~cm}$

$$
(A D: B D: A B=1: 1: \sqrt{2})
$$

$A B=5 \sqrt{2} \mathrm{~cm}$
Perimeter of the triangle $A B C=(5+5 \sqrt{3})+5 \sqrt{2}+10=15+5 \sqrt{3}+5 \sqrt{2} \mathrm{~cm}$
d) Ratio of the angles $=2: 3: 7==>$ Angles are $30^{\circ}, 45^{0}, 105^{0}$

$$
\begin{aligned}
& A B: A C: B C=5 \sqrt{2}: 10: 5+5 \sqrt{3}=\sqrt{2}: 2: 1+\sqrt{3} \\
& \left(\quad \frac{2}{12} \times 180=30^{0} \quad, \quad \frac{3}{12} \times 180=45^{0} \quad, \frac{7}{12} \times 180=105^{0}\right)
\end{aligned}
$$

