WANDOOR GANITHAM - S S L C MODEL QUESTION PAPER 2021

PREE 3 DETAILED ANSWER KEY - QUESTION PAPER 3

Qn $\mathrm{n}^{\text {o }}$	Key
For questions from 1 to 5 one score each.	
1	First term of an arithmetic sequence of algebraic form $\mathbf{3 n + 1}$ is \qquad $(3,1,4,6)$
	Answer . $3 \times 1+1=3+1=4$
2	The sum of the central angles of an arc and its alternate arc is \qquad $\left(180^{\circ}, 90^{0}, 270^{\circ}, 360^{\circ}\right)$
	Answer . 360° (Angle around a point)
3	Which number is to be added to $x^{2}+12 x+20$ to get a perfect square ? $(144,36,16,400)$
	Answer . 16
4	In the figure $\angle B=90^{\circ}, \angle C=60^{\circ}, A C=12 \mathrm{~cm}$. What is the length of $B C$?
	$\begin{aligned} & \text { Answer . } \\ & 6 \mathrm{~cm} \end{aligned}$
5	Which among the following is a point on the y - axis ? $(0,1),(2,0), \quad(1,1),(2,2)$
	Answer . (0,1)

For questions from 6 to 10 carries 2 scores each .	
6	Consider the arithmetic sequence $7,11,15, \ldots \ldots$. a) What is its common difference ? b) Find the position of the term got by adding 40 to the tenth term of this sequence ?
	Answer . a) Common difference $=11-7=4$ b) $\quad x_{10}+40=x_{10}+10 \times 4=x_{10}+10 \times d=x_{20}$
7	In the figure $<\mathrm{CBE}=80^{\circ}$ a) What is the measure of < ABC ? b) What is the measure of < ADC ?
	Answer . a) $\angle \mathrm{ABC}=100^{\circ} \quad$ (linear pair) b) $<\mathrm{ADC}=80^{\circ}$ (Opposite angles of a cyclic quadrilateral are supplementary)
8	Consider the line passing through the points $(1,2)$ and $(3,7)$. a) What is its slope ? b) Write the coordinates of another point on this line ?
	Answer . a) Slope $=\frac{7-2}{3-1}=\frac{5}{2}$ b) $(5,12) \quad(\quad(7,17)$ or $(9,22)$ or $(11,27)$ or)
9	The slant height of a cone is 20 centimetres and it makes an angle 30° with its radius a) What is its radius ? b) Compute its curved surface area ?

For questions from 11 to 20 carries 3 scores each .
11 The vertices of a triangle are points on a circle of radius 4 centimetres. If two angles of this triangle are 60° and 80°, draw the triangle

$12 \quad 6^{\text {th }}$ term of an arithmetic sequence is 25 and its $10^{\text {th }}$ term is 41 .
a) What is its common difference ?
b) What is algebraic form?
c) Find the position of 201 in this sequence ?

Answer .

a) common difference $=\frac{\text { term difference }}{\text { position difference }}=\frac{41-25}{10-6}=\frac{16}{4}=4$
b) Algebraic form $=d n+f-d=4 n+5-4=4 n+1 \quad\left(f=x_{6}-5 d=25-5 \times 4=5\right)$
c) $4 n+1=201==>4 n=201-1=200==>n=\frac{200}{4}=50$

13 Numbers from 1 to 25 are written on slips of paper and put in a box. A slip is to be drawn from it .
a) What is the probability that the number written in it is an even number ?
b) What is the probability that the number written in it is an odd number ?
c) What is the probability that the number written in it is a perfect square ?

Answer .

a) Favourable results $=2,4,6,8,10,12,14,16,18,20,22,24$
probability that the number written in it is an even number

$$
=\quad \frac{\text { Number of favourable results }}{\text { Total number of results }}=\frac{12}{25}
$$

b) Favourable results $=1,3,5,7,9,11,13,15,17,19,21,23,25$
probability that the number written in it is an odd number

$$
=\quad \frac{\text { Number of favourable results }}{\text { Total number of results }}=\frac{13}{25}
$$

c) Favourable results $=1,4,9,16,25$
probability that the number written in it is a perfect square

$$
=\frac{\text { Number of favourable results }}{\text { Total number of results }}=\frac{5}{25}
$$

14 The marks of 8 students in an exam are given below .

$$
44,73,57,34,62,44,38,48
$$

a) What is the mean mark ?
b) What is the median mark ?

Answer .

a) Mean $=\frac{44+73+57+34+62+44+38+48}{8}=\frac{400}{8}=50$
b) $34,38,44,44,48,57,62,73$

Median $=\frac{44+48}{2}=\frac{92}{2}=46$

15 In the figure $\angle A B C=120^{\circ}, \angle D=90^{\circ}, A B=14 \mathrm{~cm}, B C=10 \mathrm{~cm}$
a) What is the measure of $\angle A B D \quad$?
b) What is the length of $A D$?
c) What is the area of the triangle $A B C$?

Answer .

a) $\angle A B D=60^{\circ} \quad$ (linear pair)
b) $A D=7 \sqrt{3} \mathrm{~cm}$
c) Area of the triangle $\mathbf{A B C}=\frac{1}{2} \times 10 \times 7 \sqrt{3}$
$=35 \sqrt{3} \mathrm{sq} . \mathrm{cm}$
16 In a second degree polynomial $p(x), p(2)=0, p(3)=0$ and the coefficient of x^{2} is 1 .
a) Write a factor of $p(x) \quad$?
b) Write $p(x)$ as the product of two first degree polynomials ?
c) What number should be subtracted from $p(x)$ to get a second degree polynomial with $x-1$ as a factor ?
Answer .
a) $(x-2)$ or $(x-3)$
b) $\quad p(x)=(x-2)(x-3)$
c) 2

$$
(p(1)=(1-2)(1-3)=-1 \times-2=2)
$$

17 Draw a circle of radius 3 centimetres and draw a diameter . Draw tangents through the ends of this diameter .

	Answer .
18	From a circular sheet of radius 12 centimetres, a sector of central angle 120° is cut out and made into a cone. a) What is the slant height of the cone ? b) What is the base radius of the cone ? c) What is the base radius of another cone made by rolling up the remaining portion of the circular sheet ? Answer . a) Slant height of the cone $=$ radius of the sector $=12 \mathrm{~cm}$ b) $\frac{x}{360}=\frac{r}{R}==>\quad \frac{120}{360}=\frac{r}{12} \quad \Rightarrow \quad r=\frac{120 \times 12}{360}=4 \mathrm{~cm}$ c) $\frac{240}{360}=\frac{r}{12} \quad==>\quad r=\frac{240 \times 12}{360}=8 \mathrm{~cm}$
19	In the figure $A B C D$ is a rectangle and its sides are parallel to the axes . The coordinates of A are $(1,2)$ and those of C are $(5,4)$. a) What are the coordinates of B and D ? b) Write the coordinates of the point of intersection of the diagonals ?
	Answer . a) $B(5,2) \quad, \quad D(1,4)$ b) $\left(\frac{1+5}{2}, \frac{2+4}{2}\right)=\left(\frac{6}{2}, \frac{6}{2}\right)=(3,3) \quad$ (Diagonals of a rectangle bisect each other)

20 In the figure, tangents through the points A and B of a circle intersect at $\mathbf{P} . \mathrm{QR}^{\text {is a tangent through } \mathrm{C}}$
a) Which other line has the same length as that of PA ?
b) Which other line has the same length as that of RC?

c) Prove that the perimeter of the triangle PQR is double the length of PA ?

Answer .
a) $\quad P A=P B \quad$ (The tangents to a circle from a point are of the same length)
b) $R C=R A$
c) Perimeter of the triangle $\mathbf{P Q R}=P Q+Q R+P R=P Q+Q C+R C+P R$

$$
\begin{array}{ll}
= & P Q+Q B+R A+P R \\
= & P B+P A=P A+P A=2 P A
\end{array}
$$

For questions from 21 to 30 carries 4 scores each .
21 Draw a rectangle of width 5 cm and height $\mathbf{3 \mathrm { cm }}$. Draw a square of the same area .

Answer .

22 a) What is the common difference of the sequence $6,11,16$, \qquad ?
b) What is the common difference of the sequence $9,14,19, \ldots$. ?
c) What is the difference between the $15^{\text {th }}$ terms of the above sequences ?
d) What is the difference between the sum of first 15 terms of the above sequences ?

Answer .

a) $11-6=5$
b) $14-9=5$
c) 3
d) $15 \times 3=45$

23

A man standing away from the bottom of a tower sees its top at an elevation of $\mathbf{6 0}$.
Standing back by 50 metres, he sees it an elevation of $30^{\boldsymbol{0}}$.
a) Draw a rough figure based on the given details ?
b) What is the height of the tower ?

Answer .
a)

b) Take the height of the tower as AB .

$$
\begin{aligned}
& <A C D=180-60=120^{\circ} \\
& <D=<D A C=30^{\circ}==>\quad C D=A C=50 \mathrm{~m}
\end{aligned}
$$

In triangle $\mathbf{A B C}$, $A B=25 \sqrt{3}$

(The sides of a triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ are in the ratio $1: \sqrt{3}: 2$)
Height of the tower $=A B=25 \sqrt{3} \mathrm{~m}$
24
The figure shows two parallel sides of a square extended by 6 centimetres to make a rectangle .The area of the new rectangle is 391 square centimetres .

a) Write a second degree equation by taking the side of the square as \boldsymbol{x}
b) Compute the length of the side of the square .

Answer .
a) $x(x+6)=391==>x^{2}+6 x=391$
b) $x^{2}+6 x+3^{2}=391+3^{2}$
$(x+3)^{2}=391+9=400$
$x+3=\sqrt{400}=20$
$x=20-3=17 \mathrm{~cm}$
25 The base perimeters of two cones are in the ratio $2: 3$ and their heights are in the ratio 5: 4 .
a) If the height of the first cone is taken as 5 h , what is the height of the second cone?
b) What is the ratio of the base radii of the cones ?
c) What is the ratio of the volume of the cones ?
d) What is the volume of the second cone, if the volume of the first cone is 400π cubic centimetres ?

Answer .
a) $4 h$
b) Ratio of the base radii $=$ Ratio of the base perimeters $=\mathbf{2 : 3}$
c) Ratio of the volume of the cones $=\frac{1}{3} \times \pi \times(2 r)^{2} \times 5 h: \frac{1}{3} \times \pi \times(3 r)^{2} \times 4 h$

$$
=\frac{\frac{1}{3} \times \pi \times 4 r^{2} \times 5 h}{\frac{1}{3} \times \pi \times 9 r^{2} \times 4 h}=\frac{20}{36}=5: 9
$$

d) Volume of the second cone $=\frac{400 \pi \times 9}{5}=720 \pi \mathrm{~cm}^{3}$

26 A circle is drawn with the line joining the points $A(1,3)$ and $B(7,3)$ as diameter .
a) What are the coordinates of the centre of the circle ?

	b) Compute the radius of the circle ? c) Write the coordinates of another point on a line passing through the point (0, 3) parallel to the \boldsymbol{x} - axis ? d) Write the coordinates of a point at which the line passing through the centre of the circle perpendicular to the diameter $A B$ meets the circle ?
	Answer . a) Coordinates of the centre of the circle $=\left(\frac{1+7}{2}, \frac{3+3}{2}\right)=\left(\frac{8}{2}, \frac{6}{2}\right)=(4,3)$ b) Radius of the circle $=3$ c) (1,3) or Any point with y-coordinate 3 . d) $(4,3+3)=(4,6) \quad$ or $\quad(4,3-3)=(4,0)$ (Diameter $A B$ is parallel to the x-axis. So the line perpendicular to $A B$ is parallel to the y - axis)
27	If $\quad p(x)=x^{2}-6 x+k$ a) Find $p(2)$? b) Find the value of k if $x-2$ is a factor of $p(x)$? c) Write $p(x)$ as the product of two first degree polynomials by substituting the value of $k \quad$.
	Answer . a) $p(2)=2^{2}-6 \times 2+k=4-12+k=-8+k$ b) $p(2)=0 \quad==>\quad-8+k=0 \Rightarrow k=8$ c) $p(x)=x^{2}-6 x+8=(x-2)(x-4)$

2845 households in a neighbourhood are sorted according to their monthly income in the table below .

Monthly income (Rs)	Number of households
10000	5
20000	7
30000	8
40000	10
50000	8
60000	7

a) If the households are arranged in increasing order of monthly income, what is the monthly income of the household at the $21^{\text {st }}$ position ?
b) If the households are arranged in increasing order of monthly income , the monthly income of the household at what position is taken as the median ?
c) Find the median of the monthly income ?

Answer .

Monthly income	Number of households
Upto 10000	5
Upto 20000	12
Upto 30000	20
Upto 40000	30
Upto 50000	38
Upto 60000	45

a) monthly income of the $21^{\text {st }}$ household $=$ Rs 40000
b) $N=45$
$\frac{N+1}{2}=\frac{45+1}{2}=\frac{46}{2}=23$
Median $=$ monthly income of the $23^{\text {rd }}$ household.
c) Median of the monthly income = Rs 40000

29 In the triangle $\mathrm{ABC}, \angle A=90^{\circ}, \angle B=55^{\circ}$.
a) What is the measure of $<C$?
b) Which among the following is $\sin 55^{\circ} \quad$?

$$
\left(\frac{A B}{B C}, \frac{A C}{B C}, \frac{A C}{A B}, \frac{A B}{A C}\right)
$$

c) Similarly write $\cos 35^{\circ}$ from this triangle ?
d) What is the relation connecting $\sin x^{0}$ and $\cos (90-x)^{0}$ if an acute angle of a right triangle is x^{0} ?
Answer .
a) $<C=90-55=35^{\circ}$
b) $\quad \sin 55^{\circ}=\frac{A C}{B C}$
c) $\quad \cos 35^{\circ}=\frac{A C}{B C}$
d) $\sin x^{0}=\cos (90-x)^{0}$

30 In the figure PA is a tangent. BD is a line parallel to $\mathrm{PA} .<\mathrm{BAP}=50^{\mathbf{0}}$
a) What is the measure of < ADB ?
b) What is the measure of < ABD ?
c) What is the measure of < DCB ?

Answer .
a) $\angle A D B=50^{\circ}$ (In a circle, the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side)
b) $\angle A B D=50^{\circ} \quad\left(\quad \angle B A P=50^{\circ}\right.$, alternate angle)
c) $\angle B A D=180-(50+50)=180-100=80^{\circ}$
(Sum of the angles of a triangle is 180°)

$$
\begin{array}{r}
\angle D C B=180-80=100^{\circ} \quad(\text { ABCD is cyclic , opposite angles of a cyclic } \\
\text { quadrilateral are supplementary) } \\
\hline
\end{array}
$$

For questions from 31 to 45 carries 5 scores each .

31 a) In the figure the circle touches the sides of the triangle $A B C$ at P, Q and R. If $<C=60^{\circ}$, what is the measure of < POQ ?
b) Draw a circle of radius 2.5 cm . Draw the triangle
 with two angles 60° and 80° and all its as tangents to this circle .

Answer .

a) $\angle P O Q=180-60=120^{\circ}$ (In a circle, the angles between the radii through two points and the angle between the tangents at these points are supplementary)
b)

32 Look at the number pattern given below.

$$
\begin{array}{r}
1 \\
2 \quad 3
\end{array}
$$

$$
\begin{array}{lll}
4 & 5 & 6
\end{array}
$$

$$
\begin{array}{llll}
7 & 8 & 9 & 10
\end{array}
$$

a) Write the next line of this pattern ?
b) How many numbers are there in the $20^{\text {th }}$ line ?
c) What is the last number in the $19^{\text {th }}$ line ?
d) What are the first and last number in the $20^{\text {th }}$ line ?

Answer .
a) $\begin{array}{lllll}11 & 12 & 13 & 14 & 15\end{array}$
b) 20
c) Last number in the $\mathbf{1 9}^{\text {th }}$ line $=\frac{19 \times 20}{2}=190$
d) First number in the $\mathbf{2 0}^{\text {th }}$ line $=190+1=191$

Last number in the $\mathbf{2 0}^{\text {th }}$ line $=\frac{20 \times 21}{2}=210$
33 a) Draw the axes and mark the points $A(5,1), B(3,4), C(0,4)$ and $D(-1,1)$
b) Write the most suitable name for the quadrilateral ABCD ?
c) Find its area ?

Answer .
b) Trapezium .
c) Area $=\frac{1}{2} \times(6+3) \times 3=\frac{1}{2} \times 9 \times 3=\frac{27}{2}$ sq. cm

	a)
34	1 added to the product of two consecutive even numbers gives 361. a) Write a second degree equation by taking the smaller number as \boldsymbol{x}. b) Find the numbers ?
	Answer . a) $x(x+2)+1=361==>\quad x^{2}+2 x+1=361$ b) $(x+1)^{2}=361$ $\begin{aligned} & x+1=\sqrt{361}=19 \\ & x=19-1=18 \\ & \text { Numbers }=18,20 \end{aligned}$
35	In the figure $<\mathrm{BAC}=30^{\circ},<\mathrm{ADB}=50^{\circ}, \angle \mathrm{ACD}=60^{\circ}$ a) What is the measure of < BDC ? b) What is the measure of <ACB ? c) What is the measure of < ABD ? d) What is the central angle of the arc BCD ?

	Answer . a) $\angle B D C=30^{\circ} \quad$ (The angles made by an arc on its alternate arc are same) b) $\angle A C B=50^{\circ}$ c) $\angle A B D=60^{\circ}$ d) $\angle B A D=70^{\circ} \quad\left(\angle B C D=110^{\circ}, \mathrm{ABCD}\right.$ is a cyclic quadrilateral) Central angle of the arc BCD $=2 \times \angle B A D=2 \times 70^{\circ}=140^{\circ}$ (The central angle of an arc is double the angle made by it on the alternate arc)
36	Consider the arithmetic sequence $5,8,11$, \qquad a) What is its common difference ? b) What is its algebraic form ? c) What is its $20^{\text {th }}$ term ? d) What is the sum of first 20 terms of this sequence ? e) What is the sum of first 20 terms of the sequence $9,12,15, \ldots . . .$. ? Answer . a) Common difference $=8-5=3$ b) Algebraic form $=d n+f-d=3 n+5-3=3 n+2$ c) $x_{20}=3 \times 20+2=60+2=62$ d) \quad Sum $=\frac{20}{2} \times(5+62)=10 \times 67=670$ e) $670+20 \times 4=670+80=750$
37	$A(1,2), B(5,6)$ and $C(7,4)$ are the vertices of a triangle. a) Compute the lengths of the sides of the triangle ? b) Prove that ABC is a right triangle ? c) What are the coordinates of the centre of the circumcircle of the triangle ABC ?

	Answer . a) $A B=\sqrt{(5-1)^{2}+(6-2)^{2}}=\sqrt{4^{2}+(4)^{2}}=\sqrt{16+16}=\sqrt{32}$ $\begin{aligned} & B C=\sqrt{(7-5)^{2}+(4-6)^{2}}=\sqrt{(2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8} \\ & A C=\sqrt{(7-1)^{2}+(4-2)^{2}}=\sqrt{6^{2}+2^{2}}=\sqrt{36+4}=\sqrt{40} \end{aligned}$ b) $A B^{2}+B C^{2}=(\sqrt{32})^{2}+(\sqrt{8})^{2}=32+8=40=(\sqrt{40})^{2}=A C^{2}$ ABC is a right triangle . c) Coordinates of the centre of the circumcircle of the triangle $\mathbf{A B C}=\left(\frac{1+7}{2}, \frac{2+4}{2}\right)$ $\begin{aligned} & =\left(\frac{8}{2}, \frac{6}{2}\right) \\ & =(4,3) \end{aligned}$ (The centre of the circumcircle of a right triangle is the midpoint of its hypotenuse)
38	Consider the polynomial $p(x)=x^{2}-10 x+16$ a) Find $p(1)$? b) Write a factor of $p(x)-p(1) \quad$? c) Write $p(x)-p(1)$ as the product of two first degree polynomials ?
	Answer . a) $p(1)=1^{2}-10 \times 1+16=1-10+16=7$ b) $x-1$ c) $\quad p(x)-p(1)=x^{2}-10 x+16-7=x^{2}-10 x+9=(x-1)(x-9)$
39	A cone of maximum volume is carved out from a solid cylinder of base radius 12 centimetres and height 20 centimetres . a) Compute the volume of the cylinder ? b) Compute the volume of the cone ?

b) $Q S=4 \sqrt{3} \mathrm{~cm}$
c) $\angle Q P R=75^{\circ}$
d) $P Q=4 \sqrt{3} \times \sqrt{2}=4 \sqrt{6} \mathrm{~cm}, P R=8 \mathrm{~cm}$
 $P R: P Q: Q R=8: 4 \sqrt{6}:(4 \sqrt{3}+4)=2: \sqrt{6}:(\sqrt{3}+1)$

41 In the figure OABC is a parallelogram . CP is the perpendicular from C to its opposite side . Area of the parallelogram is 40 square centimetres .
a) What is the length of OA ?
b) Find the distance between the sides OA and BC
c) What are the coordinates of B and C ?

Answer .
a) $O A=8 \mathrm{~cm}$
b) $8 \times C P=40==>C P=\frac{40}{8}=5$ คกอ. จา
c) $C(2,5), B(10,5)$

42 In the figure circle touches the sides of the triangle DEF at P, Q and R.

$$
<\mathbf{Q P R}=70^{\circ},<\mathbf{P R Q}=50^{\circ}
$$

a) What is the measure of < EQP ?
b) What is the measure of $<\mathrm{E}$?
c) What is the measure of $<$ F ?

	Answer . a) $\angle E Q P=50^{\circ}$ (In a circle , the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side) b) $E P=E Q \quad$ (The tangents to a circle from a point are of the same length) $\angle E Q P=\angle E P Q=50^{\circ} \quad==>\quad \angle E=180-(50+50)=180-100=80^{\circ}$ c) (Sum of the angles of a triangle is $18 \mathbf{0}^{\circ}$) c) $\angle R Q F=70^{\circ}$ $F Q=F R==>\quad \angle R Q F=\angle Q R F=70^{\circ}=\Rightarrow \quad \angle F=180-(70+70)=180-140=40^{\circ}$
43	In the figure, chord $A B$ is extended to meet the tangent through C at P. a) If $<\mathrm{BCP}=3 \mathbf{0}^{\mathbf{0}}$, What is the measure of <BAC ? b) Prove that the angles of triangles APC and BPC are same? c) Prove that $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC}^{2}$?
	Answer . a) $\angle B A C=30^{\circ}$ (In a circle, the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side) b) $\angle B C P=\angle B A C$ $\angle A P C=\angle B P C \quad$ (Common angle) $\angle A C P=\angle C B P \quad$ (If two angles of two triangles are equal, their third angles are also equal) c) $\frac{P A}{P C}=\frac{P C}{P B} \quad==\quad P A \times P B=P C \times P C \quad==>\quad P A \times P B=P C^{2}$ (Sides of two triangles having same angles change in the same ratio)

44 In the figure chords $A B$ and $C D$ of the circles are extended to meet at P. $P A=24 \mathrm{~cm}, A B=18 \mathrm{~cm}$.The length of $P C$ is 10 cm more than that of PD .
a) What is the length of PB ?

b) $\mathbf{P C} \times \mathrm{PD}=$ \qquad
c) Write down a second degree equation by taking the length of $\mathbf{P D}$ as x.
d) Compute the length of PC ?

Answer .

a) $P B=24-18=6 \mathrm{~cm}$
b) $P C \times P D=P A \times P B$
c) $P D=x \quad==>\quad P C=x+10$

$$
(x+10) x=24 \times 6 \quad=\Rightarrow \quad x^{2}+10 x=144
$$

d) $x^{2}+10 x+25=144+25==>\quad(x+5)^{2}=169$
$x+5=\sqrt{169}=13 \quad \Rightarrow \quad x=13-5=8 \quad \Rightarrow \quad P D=8 \mathrm{~cm}$ $P C=x+10=8+10=18$

45 In rhombus $A B C D$, the diagonals intersect at P. $A B=8 \mathrm{~cm},<B A P=30^{\circ}$
a) What is the measure of $\angle A P B$?
b) What is the length of $P B$?
c) Compute the lengths of the diagonals ?

Answer .
a) $\angle A P B=90^{\circ} \quad$ (The diagonals of a rhombus bisect each other at right angles)
b) $P B=4 \mathrm{~cm}$
c) $B D=4+4=8 \mathrm{~cm}$

$$
\begin{aligned}
& P A=4 \sqrt{3} \mathrm{~cm} \\
& A C=4 \sqrt{3}+4 \sqrt{3}=8 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

(The sides of a triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ are in the ratio $1: \sqrt{3}: 2$)

