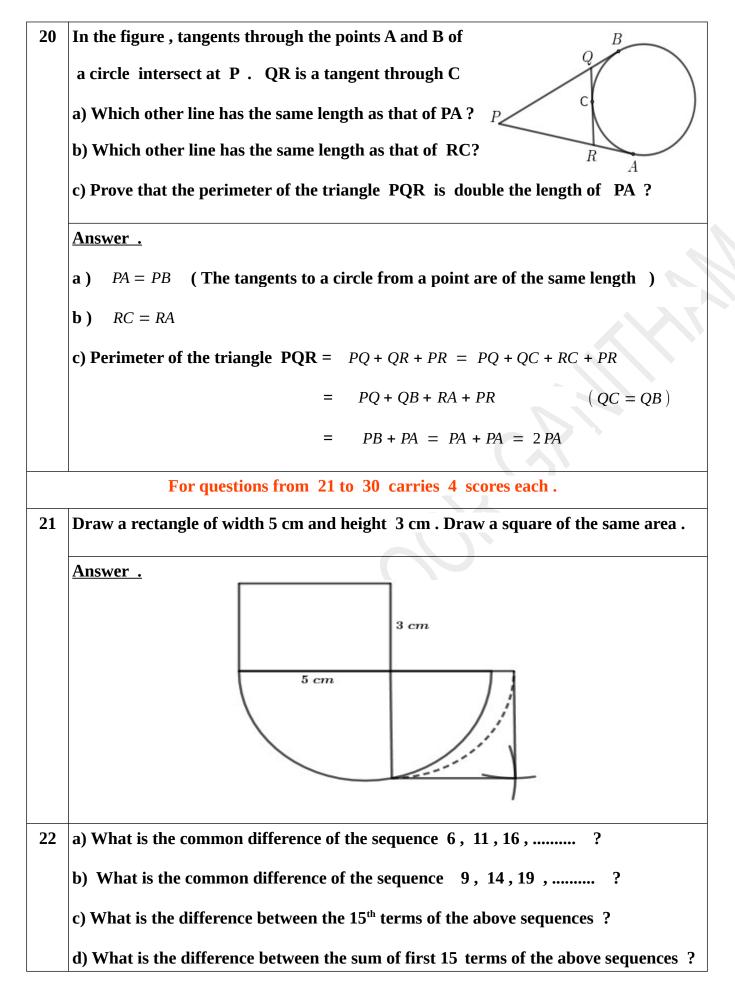
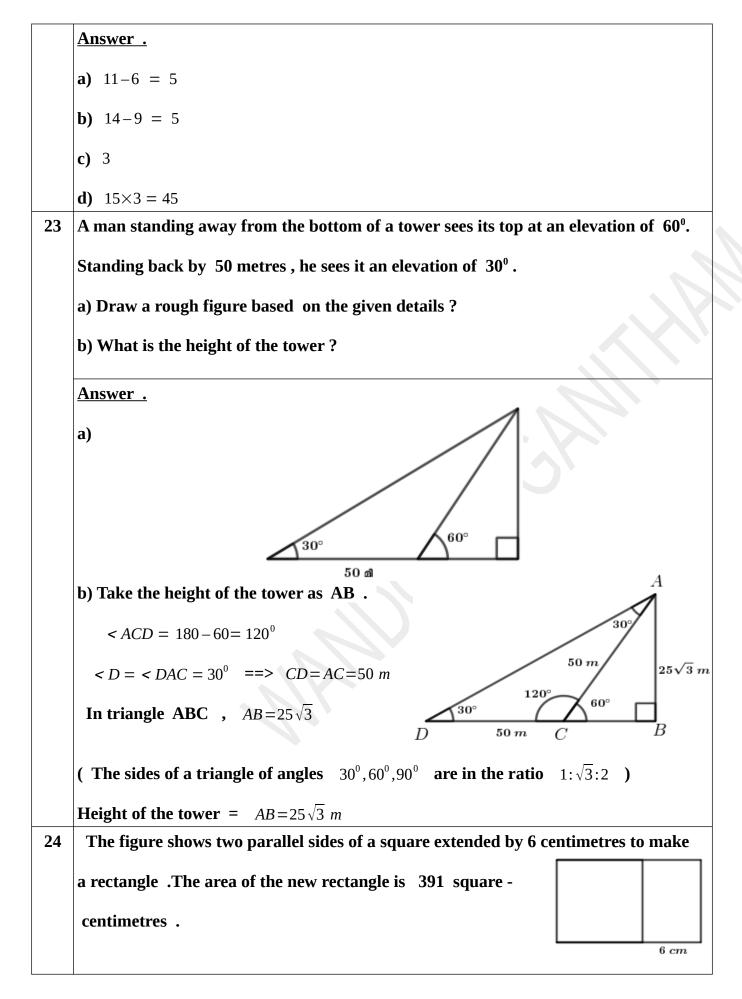

WANDOOR GANITHAM - S S L C MODEL QUESTION PAPER 2021

PREE 3

DETAILED ANSWER KEY - QUESTION PAPER 3

Qn no.	Key
	For questions from 1 to 5 one score each .
1	First term of an arithmetic sequence of algebraic form $2n \pm 1$ is
L	First term of an arithmetic sequence of algebraic form 3 n + 1 is
	(3 , 1 , 4 , 6)
	<u>Answer</u> .
	$3 \times 1 + 1 = 3 + 1 = 4$
2	The sum of the central angles of an arc and its alternate arc is
	$(180^\circ$, 90° , 270° , 360°)
	<u>Answer</u> .
	360° (Angle around a point)
3	Which number is to be added to $x^2 + 12x + 20$ to get a perfect square ?
	(144 , 36 , 16 , 400)
	<u>Answer</u> .
	16
4	In the figure $\langle B=90^\circ, \langle C=60^\circ, AC=12 cm \rangle$. What is the length of BC ?
	$\left(\begin{array}{c} 0 \\ \overline{2} \end{array} \right)$ $\left(\begin{array}{c} \overline{2} \end{array} \right)$ $\left(\begin{array}{c} \overline{2} \end{array} \right)$ $\left(\begin{array}{c} 12 \\ \overline{2} \end{array} \right)$ $\left(\begin{array}{c} 12 \\ \overline{2} \end{array} \right)$
	($6\sqrt{2}cm$, $6\sqrt{3}cm$, $12cm$, $6cm$)
	Answer .
	6 <i>cm</i>
5	Which among the following is a point on the y- axis ?
	((0,1), (2,0), (1,1), (2,2))
	Answer .
	(0,1)

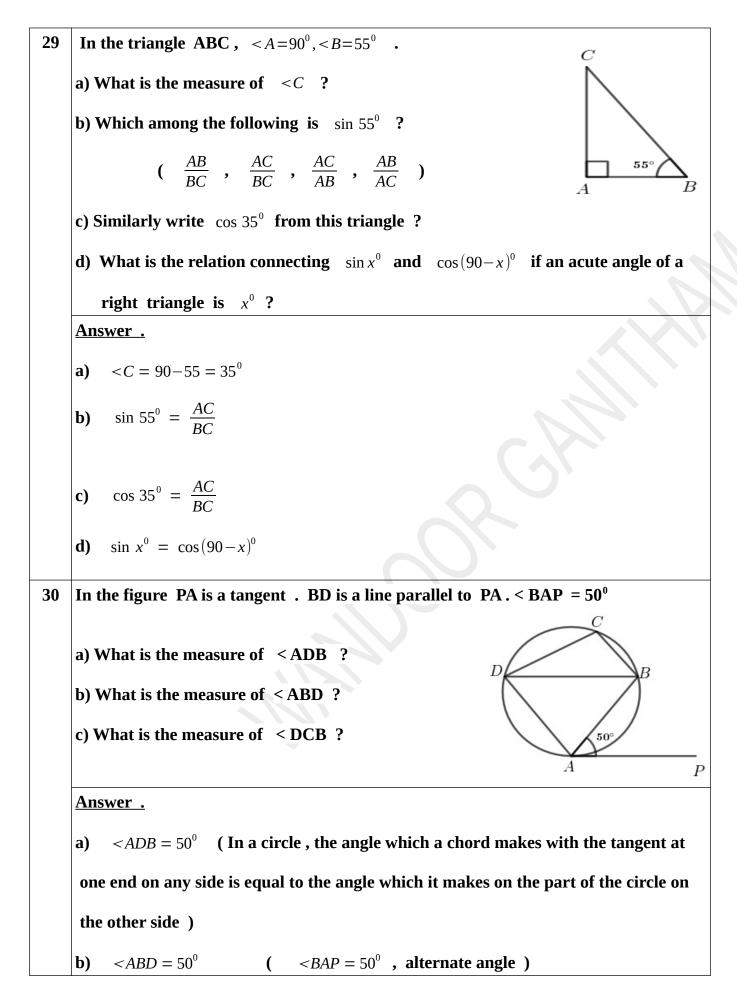

	For questions from 6 to 10 carries 2 scores each .	
6	Consider the arithmetic sequence 7, 11, 15,	
	a) What is its common difference ?	
	b) Find the position of the term got by adding 40 to the tenth term of this sequence ?	
	Answer .	
	a) Common difference = 11 – 7 = 4	
	b) $x_{10} + 40 = x_{10} + 10 \times 4 = x_{10} + 10 \times d = x_{20}$	
7	In the figure $< CBE = 80^{\circ}$	
	a) What is the measure of < ABC ?	
	b) What is the measure of < ADC ?	
	A B E	
	Answer .	
	a) $<$ ABC = 100 ^o (linear pair)	
	b) $<$ ADC = 80 ^o (Opposite angles of a cyclic quadrilateral are supplementary)	
8	Consider the line passing through the points (1, 2) and (3, 7).	
	a) What is its slope ?	
	b) Write the coordinates of another point on this line ?	
	Answer .	
	a) Slope $=\frac{7-2}{3-1}=\frac{5}{2}$	
	b) (5,12) ((7,17) or (9,22) or (11,27) or)	
9	The slant height of a cone is 20 centimetres and it makes an angle 30° with its radius	
	a) What is its radius ?	
	b) Compute its curved surface area ?	



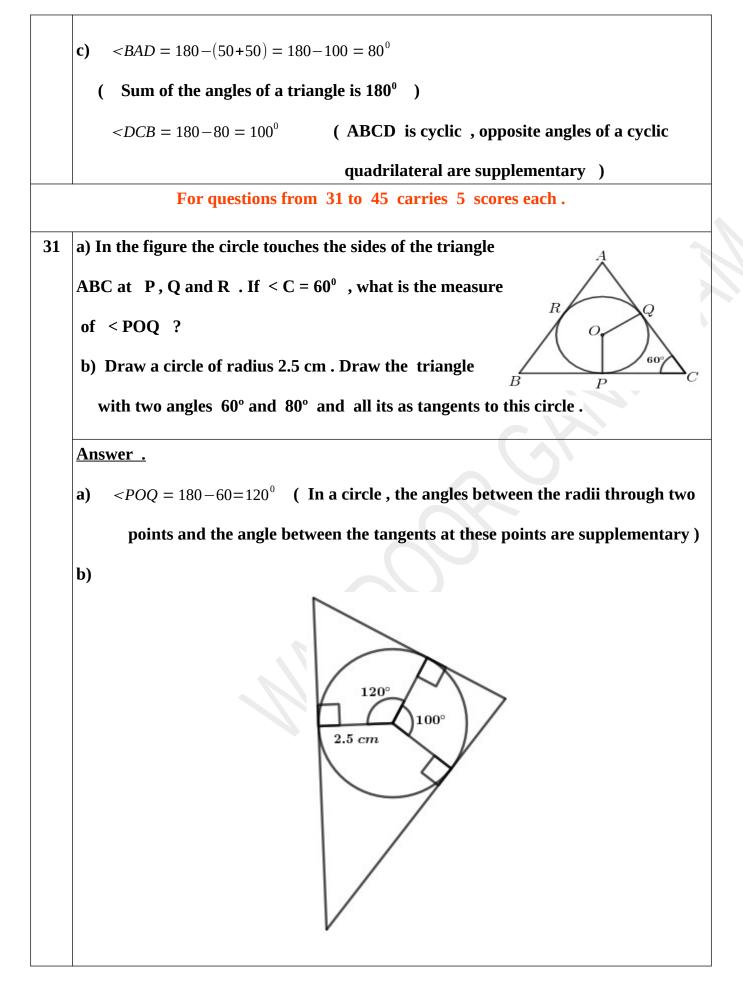
	Numbers from 1 to 25 are written on slips of paper and put in a box . A slip is to
	be drawn from it .
	a) What is the probability that the number written in it is an even number ?
	b) What is the probability that the number written in it is an odd number ?
	c) What is the probability that the number written in it is a perfect square ?
	Answer .
	a) Favourable results = 2,4,6,8,10,12,14,16,18,20,22,24
	probability that the number written in it is an even number
	$= \frac{Number of favourable results}{Total number of results} = \frac{12}{25}$
	b) Favourable results = 1,3,5,7,9,11,13,15,17,19,21,23,25
	probability that the number written in it is an odd number
	$= \frac{Number of favourable results}{Total number of results} = \frac{13}{25}$
	c) Favourable results = 1, 4, 9, 16, 25
	probability that the number written in it is a perfect square
	$= \underline{Number of favourable results} = \underline{5}$
	$= \frac{1}{Total number of results} = \frac{1}{25}$
	The marks of 8 students in an exam are given below .
	44,73,57,34,62,44,38,48
	a) What is the mean mark ?
	b) What is the median mark ?
Ī	<u>Answer</u> .
	a) Mean = $\frac{44+73+57+34+62+44+38+48}{8} = \frac{400}{8} = 50$
	b) 34, 38, 44, 44, 48, 57, 62, 73
	Median = $\frac{44+48}{2} = \frac{92}{2} = 46$

15	In the figure $$	
	a) What is the measure of $\langle ABD \rangle$? b) What is the length of $AD \rangle$? c) What is the area of the triangle $ABC \rangle$?	
	Answer . a) $\langle ABD = 60^{\circ}$ (linear pair) b) $AD = 7\sqrt{3} cm$ c) Area of the triangle ABC $= \frac{1}{2} \times 10 \times 7\sqrt{3}$	
16	 = 35√3 sq.cm In a second degree polynomial p(x) , p(2)=0, p(3)=0 and the coefficient of x² is 1. a) Write a factor of p(x) ? b) Write p(x) as the product of two first degree polynomials? c) What number should be subtracted from p(x) to get a second degree polynomial with x-1 as a factor ? Answer . a) (x-2) or (x-3) 	
	b) $p(x) = (x-2)(x-3)$ c) 2 $(p(1) = (1-2)(1-3) = -1 \times -2 = 2)$	
17	Draw a circle of radius 3 centimetres and draw a diameter . Draw tangents through the ends of this diameter .	

	Answer .
18	From a circular sheet of radius 12 centimetres , a sector of central angle 120° is cut
	out and made into a cone .
	a) What is the slant height of the cone ?
	b) What is the base radius of the cone ?
	c) What is the base radius of another cone made by rolling up the remaining portion
	of the circular sheet ?
	<u>Answer</u> .
	a) Slant height of the cone = radius of the sector = 12 cm
	b) $\frac{x}{360} = \frac{r}{R} \implies \frac{120}{360} = \frac{r}{12} \implies r = \frac{120 \times 12}{360} = 4 \ cm$
	c) $\frac{240}{360} = \frac{r}{12} \implies r = \frac{240 \times 12}{360} = 8 \ cm$
19	In the figure ABCD is a rectangle and its sides are parallel to the axes .
	The coordinates of A are (1, 2) and those of C $D = C(5, 4)$
	are (5,4) .
	a) What are the coordinates of B and D ? $A(1,2)$ B
	b) Write the coordinates of the point of intersection of the diagonals ?
	Answer .
	a) $B(5,2)$, $D(1,4)$
	b) $(\frac{1+5}{2}, \frac{2+4}{2}) = (\frac{6}{2}, \frac{6}{2}) = (3,3)$ (Diagonals of a rectangle bisect each other)

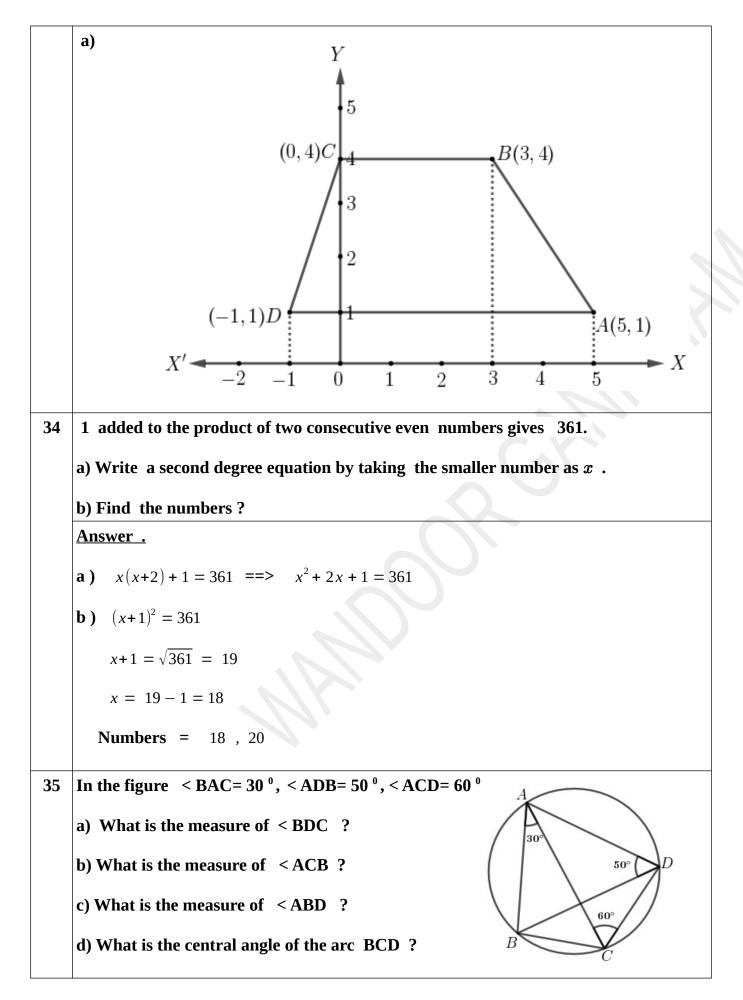

a) Write a second degree equation by taking the side of the square as
$$x$$

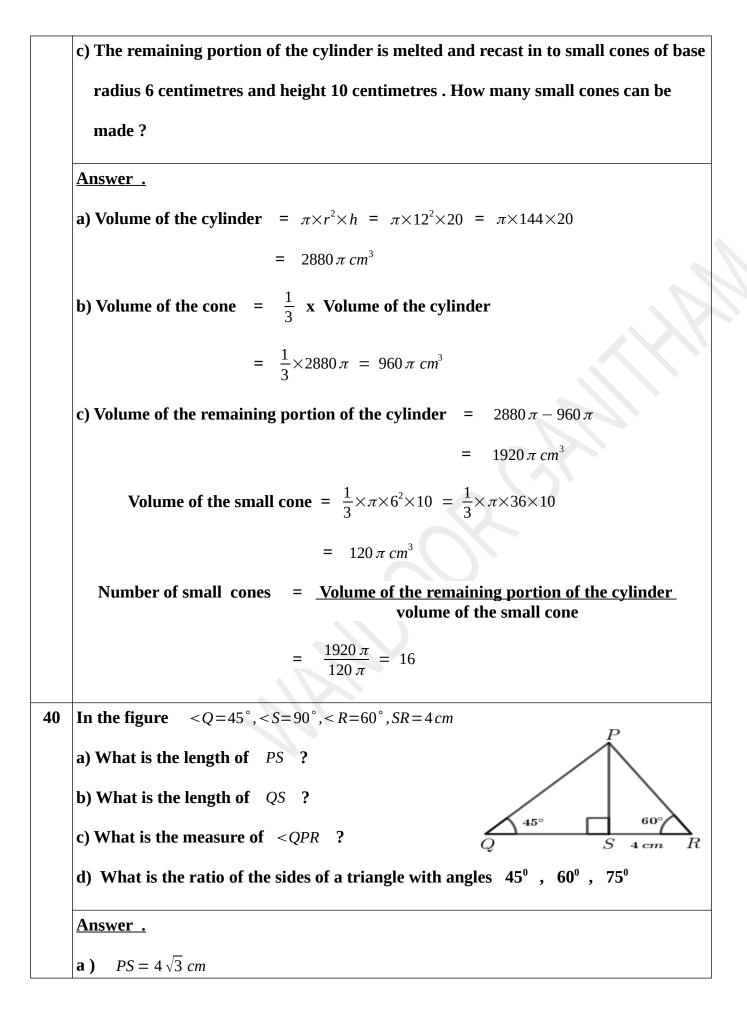
b) Compute the length of the side of the square .
Answer.
a) $x(x+6)=391 => x^2+6x=391$
b) $x^2+6x+3^2=391+3^2$
 $(x+3)^2=391+9=400$
 $x+3 = \sqrt{400} = 20$
 $x = 20-3 = 17 \text{ cm}$
25 The base perimeters of two cones are in the ratio 2 : 3 and their heights are in the ratio 5 : 4 .
a) If the height of the first cone is taken as 5h, what is the height of the second cone?
b) What is the ratio of the base radii of the cones ?
c) What is the ratio of the base radii of the cones ?
d) What is the volume of the second cone , if the volume of the first cone is 400π
cubic centimetres ?
Answer.
a) $4h$
b) Ratio of the base radii = Ratio of the base perimeters = 2:3
c) Ratio of the volume of the cones = $\frac{1}{3} \times \pi \times (2r)^2 \times 5h : \frac{1}{3} \times \pi \times (3r)^2 \times 4h$
 $= \frac{\frac{3}{3} \times \pi \times 4r^2 \times 5h}{\frac{1}{3} \times \pi \times 9r^2 \times 4h} = \frac{20}{36} = 5:9$
d) Volume of the second cone = $\frac{400 \pi \times 9}{5} = 720 \pi$ cm³
26 A circle is drawn with the line joining the points A(1, 3) and B(7, 3) as diameter .
a) What are the coordinates of the centre of the circle ?

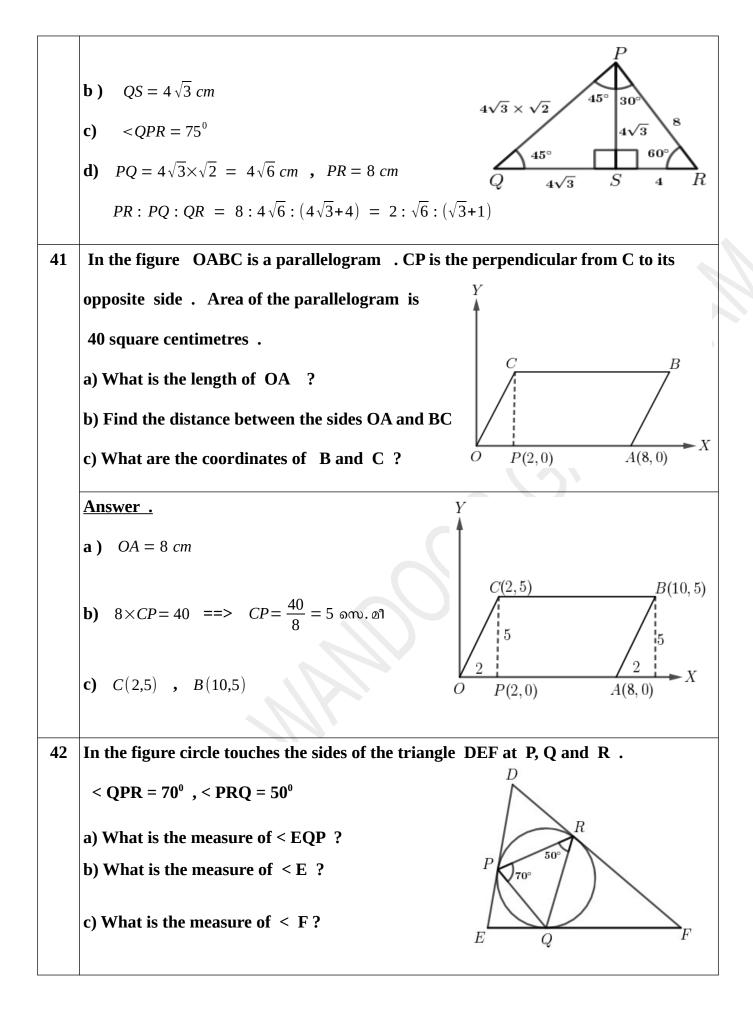

	b) Compute the radius of the circle ?
	c) Write the coordinates of another point on a line passing through the point $(0, 3)$
	parallel to the x - axis ?
	d) Write the coordinates of a point at which the line passing through the centre of
	the circle perpendicular to the diameter AB meets the circle ?
	Answer .
	a) Coordinates of the centre of the circle = $\left(\frac{1+7}{2}, \frac{3+3}{2}\right) = \left(\frac{8}{2}, \frac{6}{2}\right) = (4, 3)$
	b) Radius of the circle = 3
	c) (1,3) or Any point with y – coordinate 3.
	d) $(4, 3+3) = (4, 6)$ or $(4, 3-3) = (4, 0)$
	(Diameter AB is parallel to the x – axis . So the line perpendicular to AB is
	parallel to the y – axis)
27	If $p(x)=x^2-6x+k$
	a) Find $p(2)$?
	b) Find the value of k if $x-2$ is a factor of $p(x)$?
	c) Write $p(x)$ as the product of two first degree polynomials by substituting the
	value of <i>k</i> .
-	<u>Answer</u> .
	a) $p(2)=2^2-6\times 2+k = 4-12+k = -8+k$
	b) $p(2) = 0 = -8 + k = 0 = k = 8$
	c) $p(x)=x^2-6x+8 = (x-2)(x-4)$

	Monthly income (Rs)	Number of households	
	10000	5	
	20000	7	
	30000	8	
	40000	10	-
	50000	8	
	60000	7	
b) If the hou monthlyc) Find the m	eholds are arranged in increasi y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ?	ng order of monthly income	, the
b) If the hou monthlyc) Find the m	y income of the household at the seholds are arranged in increas income of the household at wha	ng order of monthly income	, the
b) If the hou monthlyc) Find the m	y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ?	ng order of monthly income position is taken as the media	, the
b) If the hou monthlyc) Find the m	y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ? Monthly income	ng order of monthly income position is taken as the media Number of households	, the
b) If the hou monthlyc) Find the m	y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ? Monthly income Upto 10000	ng order of monthly income position is taken as the media Number of households	, the
b) If the hou monthlyc) Find the m	y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ? Monthly income Upto 10000 Upto 20000	ng order of monthly income position is taken as the media Number of households 5 12	, the
b) If the hou monthlyc) Find the m	y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ? Monthly income Upto 10000 Upto 20000 Upto 30000	ng order of monthly income position is taken as the media Number of households 5 12 20	, the
b) If the hou monthly	y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ? Monthly income Upto 10000 Upto 20000 Upto 30000 Upto 40000	ng order of monthly income position is taken as the media Number of households 5 12 20 30	, the
b) If the hou monthly c) Find the m <u>Answer</u> .	y income of the household at the seholds are arranged in increas income of the household at wha edian of the monthly income ? Monthly income Upto 10000 Upto 20000 Upto 30000 Upto 30000 Upto 50000	ng order of monthly income position is taken as the media Number of households 5 12 20 30 30 38 45	, the

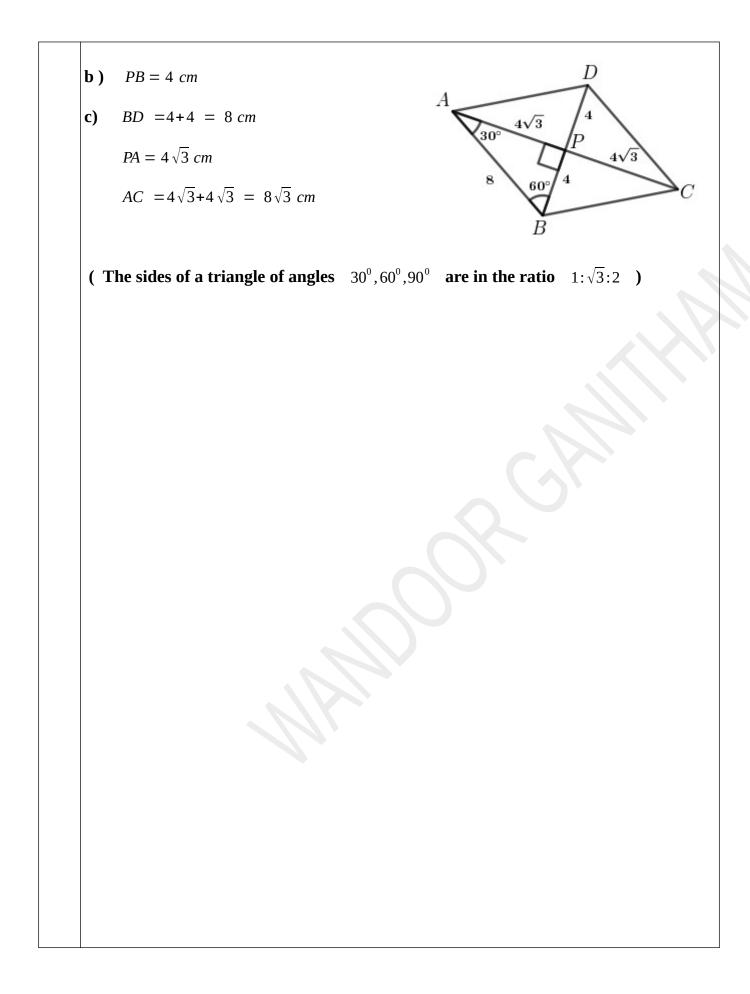
Median = monthly income of the 23rd household .


c) Median of the monthly income = Rs 40000


SARATH AS, GHS ANCHACHAVADI, MALAPPURAM


32	Look at the number pattern given below.	
	1	
	2 3	
	4 5 6	
	7 8 9 10	
	a) Write the next line of this pattern ?	
	b) How many numbers are there in the 20 th line ?	
	c) What is the last number in the 19 th line ?	
	d) What are the first and last number in the 20 th line ?	
	<u>Answer</u> .	
	a) 11 12 13 14 15	
	b) 20	
	c) Last number in the 19 th line = $\frac{19 \times 20}{2}$ = 190	
	d) First number in the 20 th line = 190 + 1 = 191	
	Last number in the 20th line = $\frac{20 \times 21}{2} = 210$	
33	a) Draw the axes and mark the points $A(5,1), B(3,4), C(0,4)$ and $D(-1, 1)$	
	b) Write the most suitable name for the quadrilateral ABCD ?	
	c) Find its area ?	
	Answer .	
	b) Trapezium .	
	c) Area = $\frac{1}{2} \times (6+3) \times 3 = \frac{1}{2} \times 9 \times 3 = \frac{27}{2} sq.cm$	

	Answer .
	a) $ (The angles made by an arc on its alternate arc are same)$
	b) $$
	$c) \qquad $
	d) $ (, ABCD is a cyclic quadrilateral)$
	Central angle of the arc BCD = $2 \times \langle BAD = 2 \times 70^{\circ} = 140^{\circ}$
	(The central angle of an arc is double the angle made by it on the alternate arc)
36	Consider the arithmetic sequence 5, 8, 11,
	a) What is its common difference ?
	b) What is its algebraic form ?
	c) What is its 20 th term ?
	d) What is the sum of first 20 terms of this sequence ?
	e) What is the sum of first 20 terms of the sequence 9, 12, 15,?
	Answer .
	a) Common difference = $8-5=3$
	b) Algebraic form = $dn + f - d = 3n + 5 - 3 = 3n + 2$
	c) $x_{20} = 3 \times 20 + 2 = 60 + 2 = 62$
	d) $Sum = \frac{20}{2} \times (5+62) = 10 \times 67 = 670$
	e) $670 + 20 \times 4 = 670 + 80 = 750$
37	A(1,2), B(5,6) and $C(7,4)$ are the vertices of a triangle .
	a) Compute the lengths of the sides of the triangle ?
	b) Prove that ABC is a right triangle ?
	c) What are the coordinates of the centre of the circumcircle of the triangle ABC ?


	Answer .	
	a) $AB = \sqrt{(5-1)^2 + (6-2)^2} = \sqrt{4^2 + (4)^2} = \sqrt{16+16} = \sqrt{32}$	
	$BC = \sqrt{(7-5)^2 + (4-6)^2} = \sqrt{(2)^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8}$	
	$AC = \sqrt{(7-1)^2 + (4-2)^2} = \sqrt{6^2 + 2^2} = \sqrt{36 + 4} = \sqrt{40}$	
	b) $AB^2 + BC^2 = (\sqrt{32})^2 + (\sqrt{8})^2 = 32 + 8 = 40 = (\sqrt{40})^2 = AC^2$	
	ABC is a right triangle .	
	c) Coordinates of the centre of the circumcircle of the triangle ABC = $(\frac{1+7}{2}, \frac{2+4}{2})$	
	$= \left(\frac{8}{2}, \frac{6}{2}\right)$	
	= (4,3)	
	(The centre of the circumcircle of a right triangle is the midpoint of its hypotenuse)	
38	Consider the polynomial $p(x)=x^2-10x+16$	
	a) Find $p(1)$?	
	b) Write a factor of $p(x)-p(1)$?	
	c) Write $p(x)-p(1)$ as the product of two first degree polynomials ?	
	Answer .	
	a) $p(1)=1^2-10\times 1+16 = 1-10+16 = 7$	
	b) x-1	
	c) $p(x) - p(1) = x^2 - 10x + 16 - 7 = x^2 - 10x + 9 = (x-1)(x-9)$	
39	A cone of maximum volume is carved out from a solid cylinder of base radius	
	12 centimetres and height 20 centimetres .	
	a) Compute the volume of the cylinder ?	
	b) Compute the volume of the cone ?	

Answer .
a) $\angle EQP = 50^{\circ}$ (In a circle, the angle which a chord makes with the tangent at
one end on any side is equal to the angle which it makes on the part of the circle on
the other side)
b) $EP = EQ$ (The tangents to a circle from a point are of the same length)
$\angle EQP = \angle EPQ = 50^{\circ} = 2 \ge \angle E = 180 - (50 + 50) = 180 - 100 = 80^{\circ}$
(Sum of the angles of a triangle is 180 [°]) c) $\angle RQF = 70^{\circ}$
$FQ = FR => \angle RQF = \angle QRF = 70^{\circ} => \angle F = 180 - (70+70) = 180 - 140 = 40^{\circ}$
43 In the figure , chord AB is extended to meet the tangent through C at P.
a) If $< BCP = 30^{\circ}$, What is the measure of $< BAC$?
b) Prove that the angles of triangles APC and BPC
are same ?
c) Prove that PA x PB = PC ² ?
<u>Answer</u> .
a) $\angle BAC = 30^{\circ}$ (In a circle, the angle which a chord makes with the tangent at
one end on any side is equal to the angle which it makes on the part of the circle on
the other side)
b) $\angle BCP = \angle BAC$
$\angle APC = \angle BPC$ (Common angle)
$\angle ACP = \angle CBP$ (If two angles of two triangles are equal, their third angles are
also equal)
c) $\frac{PA}{PC} = \frac{PC}{PB} \implies PA \times PB = PC \times PC \implies PA \times PB = PC^2$
(Sides of two triangles having same angles change in the same ratio)
SADATH A S. CHSANCHACHAVADI MALADDUDAM

44 In the figure chords AB and CD of the circles are extended to meet at P.
PA = 24 cm , AB = 18 cm. The length of PC is 10 cm
more than that of PD.
a) What is the length of PB ?
b) PC x PD =
c) Write down a second degree equation by taking the length of PD as
$$x$$
.
d) Compute the length of PC ?
Answer.
a) $PB = 24 - 18 = 6 cm$
b) $PC \times PD = PA \times PB$
c) $PD = x \implies PC = x + 10$
 $(x+10)x = 24 \times 6 \implies x^2 + 10x = 144$
d) $x^2 + 10x + 25 = 144 + 25 \implies (x+5)^2 = 169$
 $x+5 = \sqrt{169} = 13 \implies x = 13 - 5 = 8 \implies PD = 8 cm$
 $PC = x + 10 = 8 + 10 = 18$
45 In rhombus ABCD , the diagonals intersect at P · $AB = 8cm$, $a) What is the length of PB ?
b) What is the length of PB ?
c) Compute the lengths of the diagonals ?
Answer .
a) $(The diagonals of a rhombus bisect each other at right angles)$$

