WANDOOR GANITHAM - S S L C LAST BELL 2021

4105E
FOCUS AREA - SECOND DEGREE EQUATIONS

No		Score
1	x is a natural number . a) What number should be added to $x^{2}+16 x$ to get a perfect square ? b) If $x^{2}+16 x=36$, find the natural number represented by x ?	4
2	x is a natural number . a) What number should be added to $x^{2}-30 x$ to get a perfect square ? b) If $x^{2}-30 x=64$, find the natural number represented by x ?	4
3	When each side of a square was increased by 8 metres, the area became 324 square metres . a) Write a second degree equation by taking the side of the original square as \boldsymbol{x}. b) What was the length of a side of the original square ?	3
4	When each side of a square was decreased by 5 metres, the area became 225 square metres . a) Write a second degree equation by taking the side of the original square as x b) What was the length of a side of the original square ?	3
5	1 added to the product of two consecutive even numbers gives 289 . a) Write a second degree equation by taking the smaller number as \boldsymbol{x} b) Find the numbers ?	4

6	1 added to the product of two consecutive odd numbers gives 400 . a) Write down a second degree equation by taking the smallerd number as \boldsymbol{x} b) Find the numbers ?	4
7	9 added to the product of two consecutive multiples of 6 gives 441 . a) Write a second degree equation by taking the smaller multiple as \boldsymbol{x} b) Find the numbers ?	
8	The product of two consecutive multiples of 4 is 672 . a) Write a second degree equation by taking the smaller multiple as \boldsymbol{x} b) Find the numbers ?	5
9	Consider the arithmetic sequence 6,7,8, \qquad a) What is its common difference ? b) What is its algebraic form ? c) Find the position of the term of this sequence whose square is 900 ?	5
10	Consider the arithmetic sequence $3,5,7$, \qquad a) What is its common difference ? b) What is its algebraic form ? c) Find the position of the term of this sequence whose square is 625 ?	5
11	The product of two consecutive terms of the arithmetic sequence $1,7,13$, \qquad is 1591 . a) What is its common difference ? b)Write a second degree equation by taking any one of the consecutive term as \boldsymbol{x} c) Find the terms ?	5
12	The sum of the square of a number and 8 times that number is 240 . a) Write a second degree equation by taking the number as \boldsymbol{x} b) Find the number ?	5

13	12 times a number subtracted from the square of that number gives 864 . a) Write a second degree equation by taking the number as \boldsymbol{x} b) Find the number ?	5
14	The product of a number and 14 more than that number is 351 . a) Write a second degree equation by taking the number as \boldsymbol{x} b) Find the number ?	5
15	The product of a number and 20 less than that number is 525 . a) Write a second degree equation by taking the number as x b) Find the number ?	5
16	The longer side of a rectangle is $\mathbf{6}$ centimetres more than its shorter side . The area of the rectangle is 247 square centimetres . a) Write a second degree equation by taking the shorter side as \boldsymbol{x} b) Compute the lengths of the sides?	5
17	The shorter side of a rectangle is 2 centimetres less than its longer side . The area of the rectangle is 195 square centimetres . a) Write a second degree equation by taking the longer side as x b) Compute the lengths of the sides ?	5
18	The perimeter of a rectangle is 44 centimetres and its area is 117 square centimetres . a) What is the sum of the lengths of the longer and the shorter sides of the rectangle ? b)Write a second degree equation by taking the length of the longer side as $11+x$ c) Compute the lengths of the sides?	5

19	The perimeter of a rectangle is 48 centimetres and its area is 135 square centi metres . a) What is the sum of the lengths of the longer and the shorter sides of the rectangle ? b)Write a second degree equation by taking the length of the shorter side as $12-x$ c) Compute the lengths of the sides?
20	a) Perimeter of a rectangle is $\mathbf{6 0}$ centimetres. Write a pair of numbers that can be the measures of its sides ? b) Perimeter of a rectangle is $\mathbf{6 0}$ centimetres and its area $\mathbf{1 7 6}$ square centimetres Compute length of its sides ?
21	The longer side of a rectangle is $\mathbf{4}$ centimetres more than its shorter side . The diagonal of the rectangle is 20 centimetres . a) Write a second degree equation by taking the shorter side as \boldsymbol{x} b) Compute the lengths of the sides?
22	The shorter side of a rectangle is 14 centimetres less than its longer side. The diagonal of the rectangle is 26 centimetres . a) Write a second degree equation by taking the longer side as x b) Compute lengths of the sides ?
23	The perimeter of a rectangle is 28 centimetres and its diagonal is $\mathbf{1 0}$ centimetres . a) What is the sum of the lengths of the longer and the shorter sides of the rectangle ? b) Write down a second degree equation by taking the length of the longer side as $7+x$ c) Compute the lengths of the sides?

24	The perimeter of a rectangle is 56 centimetres and its diagonal is $\mathbf{2 0}$ centimetres . a) What is the sum of the lengths of the longer and the shorter sides of the rectangle ? b) Write down a second degree equation by taking the length of the shorter side as $14-x$ c) Compute the lengths of the sides ?	5
25	The longer side of a rectangle is 2 centimetres more than its shorter side . The diagonal of the rectangle is $\mathbf{4}$ centimetres more than its shorter side . a) Write a second degree equation by taking the shorter side as \boldsymbol{x} b) Compute the lengths of the sides ?	5
26	The longer side of a rectangle is 1 centimetres less than double its shorter side . The diagonal of the rectangle is $\mathbf{1}$ centimetres more than double its shorter side . a) Write a second degree equation by taking the shorter side as \boldsymbol{x} b) Compute the lengths of the sides ?	5
27	The longer side of a rectangle is $\mathbf{3}$ centimetres more thrice its shorter side . The diagonal of the rectangle is $\mathbf{4}$ centimetres more than thrice its shorter side . a) Write a second degree equation by taking the shorter side as \boldsymbol{x} b) Compute the lengths of the sides ?	5
28	One of the perpendicular sides of a right triangle is 4 centimetres more than the other . The hypotenuse is $\mathbf{8}$ centimetres more than the shorter side . a) Write a second degree equation by taking the shorter side as \boldsymbol{x} b) Compute the lengths of the sides ?	5
29	One of the perpendicular sides of a right triangle is 2 centimetres more than double the other. The hypotenuse is $\mathbf{3}$ centimetres more than double the shorter side .	5

	a) Write a second degree equation by taking the shorter side as b) Compute the lengths of the sides?	
30	A pavement of with 4 metres is built around a square shaped garden. The area of the garden with the pavement is $\mathbf{1 6 0 0}$ square metres. a) Draw a rough figure on the basis of the given details and mark the measures ? b) Write a second degree equation by taking the side of the garden as \boldsymbol{x} c) Compute the side of the garden ?	5
31	A pavement of with 2 metres is built around just inside the square shaped garden The area of the garden other than the pavement is 3600 square metres . a) Draw a rough figure on the basis of the given details and mark the measures ? b) Write a second degree equation by taking the side of the garden as \boldsymbol{x} c) Compute the side of the garden ?	5
32	The length and breadth of a rectangular garden are 40 metres and $\mathbf{2 0}$ metres. There is a path of a fixed width around just outside the garden . The area of the path is 124 square centimetres. a) Draw a rough figure on the basis of the given details and mark the measures ? b) Write a second degree equation by taking the width of the path as x c) Compute the width of the path ?	5
33	The length and breadth of a rectangular garden are 60 metres and 40 metres . There is a path of a fixed width around just inside the garden. The area of the path is 384 square centimetres . a) Draw a rough figure on the basis of the given details and mark the measures ? b) Write a second degree equation by taking the width of the path \boldsymbol{x} c) Compute the width of the path ?	5
34	The figure shows two parallel sides of a square extended by 6 centimetres to make a rectangle . The area of the new rectangle is 256 square centimetres .	

	a) Write a second degree equation by taking the side of the square as \boldsymbol{x}	
	b) Compute the length of the side of the square	
35	Two parallel sides of a square extended by 10 metres to make a rectangle . The are a of the new rectangle is 576 square centimetres . a) Draw a rough figure on the basis of the given details and mark the measures ? b) Write a second degree equation by taking the side of the square as \boldsymbol{x} b) Compute the length of the side of the square .	4
36	In the figure two chords $A B$ and $C D$ intersect at P $P A=16 \mathrm{~cm}, P B=6 \mathrm{~cm}$. The length of $P D$ is 4 cm more than that of PC . a) $\mathbf{P C} \times \mathrm{PD}=$ \qquad b) Write down a second degree equation by taking the length of PC as \boldsymbol{x}. c) Compute length of CD ?	5
37	In the figure chords $A B$ and $C D$ of the circles are extended to meet at $P . P A=24 \mathrm{~cm}, A B=18 \mathrm{~cm}$. The length of PC is 10 cm more than that of PD . a) What is the length of PB ? b) $\mathbf{P C} \times \mathbf{P D}=$ \qquad c) Write down a second degree equation by taking the length of PD as \boldsymbol{x}. d) Compute the length of $C D$?	5
38	In the figure $A B$ is the diameter of the semicircle . P is a point on $A B$. The perpendicular drawn through P to $A B$ meets the semicircle at $C . P A$ is 10 centimetres more than PB . PC = $\mathbf{1 2}$ centimetres .	

	a) $\mathbf{P A} \times \mathbf{P B}=$ \qquad b) Write down a second degree equation by taking the length of PB as \boldsymbol{x}. c) Compute the length of AB ?	5
39	In the figure chord $A B$ of the circles is extended to meet the tangent through C at $P . P C=8 \mathrm{~cm}$ The length of $\mathbf{P A}$ is 12 cm more than that of $\mathbf{P B}$. a) $\mathbf{P A} \times \mathrm{PB}=$ \qquad b) Write down a second degree equation by taking the length of PB as \boldsymbol{x}. c) What is the length of AB ?	5
40	In the figure O is the centre of the circle. Chords $A B$ and $\mathbf{C D}$ are intersect at \mathbf{P}. $\mathrm{PC}=4 \mathrm{~cm}, \mathrm{PD}=3 \mathrm{~cm}, \mathrm{PO}=2 \mathrm{~cm} .$ a) If the radius of the circle is taken as r, what is the length of PB ? b) $\mathbf{P A} \times \mathbf{P B}=$ \qquad c) What is the radius of the circle ?	5
41	In the figure O is the centre of the circle. Chords $A B$ and $\mathbf{C D}$ are intersect at \mathbf{P}. $\mathrm{PA}=8 \mathrm{~cm}, \mathrm{~PB}=5 \mathrm{~cm}, \mathrm{PO}=3 \mathrm{~cm} .$ a) If the radius of the circle is taken as r, what is the length of PD ? b) $\mathbf{P C} \times \mathbf{P D}=$ \qquad c) What is the radius of the circle ?	5

