## 7.13 KINEMATICS OF ROTATIONAL MOTION ABOUT A FIXED AXIS

A rigid body is one in which the distance between any two pair of particles remains constant.

Consider a rigid body capable to rotate about an axis AB as shown in fig. 28. When a force is applied on it, each particle of the body revolves on a circular path of radius equal to its distance from the axis. Now the rigid body is in rotational motion and the physical quantities needed for explaining its motion are angular displacement  $\theta$ , angular velocity  $\omega$  and angular acceleration  $\alpha$ .



These quantities were related with the translational motion as,

 $x=r\theta$ ;  $v=r\omega$ ;  $a=r\alpha$ 

### **Equations of Rotational Motion**

Just as the equations of translatory (linear) motion, we can derive equations of rotational motion. Here the angular acceleration of the rotating body is taken as a constant.

## a. Angular velocity after any time

Consider a rigid body of mass m rotating about an axis with uniform angular acceleration  $\alpha$ . Let  $\omega_0$  be its initial angular velocity. After any time t, let  $\omega_0$  be its angular velocity. Now its angular acceleration, by definition

 $\alpha = \frac{\omega_t - \omega_0}{t}$  $\therefore \omega_t - \omega_0 = \alpha t, \qquad \omega_t = \omega_0 + \alpha t \qquad \dots \dots \qquad (1)$ 

## b. Angular displacement after any time

Let a rigid body capable of rotation about an axis, revolves with a uniform angular acceleration  $\alpha$ . Let  $\omega_0$  be its initial angular velocity. After any time t, let it has an angular displacement of  $\theta$ , and its angular velocity becomes  $\omega_t$ .

Angular displacement = Average angular velocity × time

i.e., 
$$\theta = \left(\frac{\omega_1 + \omega_0}{2}\right)t$$

But  $\omega_1 = \omega_0 + \alpha t$ 

i.e.

# Angular velocity after some angular displacement

Let a rigid body rotate about an axis with uniform angular acceleration  $\alpha$ . Let  $\omega_0$  be its initial angular velocity. After an angular displacement  $\theta$ , let its angular velocity becomes  $\omega_i$ .

Now from (1) equation,  $(\omega_t - \omega_0) = \alpha t$  ..... (1)

Also, Average angular velocity × time = angular displacement

i.e., 
$$\left(\frac{\omega_t + \omega_0}{2}\right)t = \theta$$
 or  $(\omega_t + \omega_0) = \frac{2\theta}{t}$  ..... (2)

Multiplying (1) and (2), we get

$$(\omega_{t} + \omega_{0})(\omega_{t} - \omega_{0}) = \frac{2\theta}{t} \times \alpha t$$
  
i.e., 
$$\omega_{t}^{2} - \omega_{0}^{2} = 2\alpha\theta$$
$$\omega_{t}^{2} = \omega_{0}^{2} + 2\alpha\theta \qquad \dots \dots (3)$$

#### d. Kinetic energy of rotation

Consider a rigid body, consisting of n particles, executing rotational motion (See fig 28). The first particle of mass  $m_1$  is at a distance  $r_1$  from AB, second particle of mass  $m_2$  is at a distance  $r_2$  from AB etc. Also the velocity of first particle is  $v_1$  that of second particle is  $v_2$  etc.

Kinetic energy of first particle =  $\frac{1}{2}m_1v_1^2$ Kinetic energy of  $2^{nd}$  particle =  $\frac{1}{2}m_2v_2^2$ Kinetic energy of  $n^{th}$  particle =  $\frac{1}{2}m_nv_n^2$ Total KE =  $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 \dots + \frac{1}{2}m_nv_n^2$ But  $v_1 = r_1\omega$ ,  $v_2 = r_2\omega$  etc. Substituting Total KE of rotation =  $\frac{1}{2}m_1r_1^2\omega^2 + \frac{1}{2}m_2r_2^2\omega^2 + \dots + \frac{1}{2}m_nr_n^2\omega^2$  $= \frac{1}{2}\omega^2[m_1r_1^2 + m_2r_2^2 + \dots + m_nr_n^2] = \frac{1}{2}\omega^2I$  **TABLE 2** 

| Body                                              | Axis                                                                                                                                         | MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Circular Ring                                     | a. Through its centre and<br>perpendicular to its plane                                                                                      | MR <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $( \uparrow ) ( \land )^{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                   | b. About any diameter                                                                                                                        | $\frac{MR^2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} B \\ B \\ (a) \\ (a)$ |
|                                                   | c. About any tangent paral-<br>lel to the diameter                                                                                           | $\frac{3}{2}$ MR <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Circular Disc                                     | a. Through its centre and perpendicular to its plane                                                                                         | $\frac{MR^2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | b. About any diameter                                                                                                                        | $\frac{MR^2}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.<br>                                            | c. About any tangent paral-<br>lel to the diameter                                                                                           | $\frac{5}{4}$ MR <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thin Rod                                          | a. Through its centre and perpendicular to its length                                                                                        | $\frac{Ml^2}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | b. Through one end of the rod and $\perp$ to its length                                                                                      | $\frac{Ml^2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solid Sphere                                      | a. About any diameter                                                                                                                        | $\frac{2}{5}$ MR <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Hollow Sphere (Shell)                             | a. About any diameter                                                                                                                        | $\frac{2}{3}$ MR <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rectangular lamina                                | a. Through its centre and perpendicular to its plane                                                                                         | $\frac{M}{12}(l^2+b^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | b. Through one side                                                                                                                          | $\frac{M}{3}(l^2+b^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ЛВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Solid cylinder                                    | a. About the axis                                                                                                                            | $\frac{1}{2}$ MR <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| бана — Полония<br>Алана — Полония<br>Алана — Кала | b. About the centre and per-<br>pendicular to its own axis                                                                                   | $\frac{M}{4}\left(R^2 + \frac{l^2}{3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | Circular Ring<br>Circular Disc<br>Circular Disc<br>Thin Rod<br>Solid Sphere<br>Hollow Sphere (Shell)<br>Rectangular lamina<br>Solid cylinder | Dodya. Through its centre and<br>perpendicular to its planeCircular Ringa. Through its centre and<br>perpendicular to its planeb. About any diameterc. About any tangent paral-<br>lel to the diameterCircular Disca. Through its centre and<br>perpendicular to its planeb. About any diameterc. About any diameterc. About any diameterc. About any tangent paral-<br>lel to the diameterThin Roda. Through its centre and<br>perpendicular to its lengthb. Through one end of the<br>rod and $\perp$ ' to its lengthSolid Spherea. About any diameterHollow Sphere (Shell)a. About any diameterB. Through one sideb. Through one sideb. About the axisb. About the axis | Descriptiona. Through its centre and<br>perpendicular to its planeMR2Circular Ringa. Through its centre and<br>perpendicular to its plane $\frac{MR^2}{2}$ b. About any diameter $\frac{MR^2}{2}$ c. About any tangent paral-<br>lel to the diameter $\frac{3}{2}$ MR2Circular Disca. Through its centre and<br>perpendicular to its plane $\frac{MR^2}{2}$ b. About any diameter $\frac{MR^2}{4}$ c. About any diameter $\frac{MR^2}{4}$ c. About any tangent paral-<br>lel to the diameter $\frac{5}{4}$ MR2Thin Roda. Through its centre and<br>perpendicular to its length $\frac{Ml^2}{12}$ b. Through one end of the<br>rod and $\perp$ 'to its length $\frac{Ml^2}{3}$ Solid Spherea. About any diameter $\frac{2}{5}$ MR2Hollow Sphere (Shell)a. About any diameter $\frac{2}{3}$ MR2Solid cylindera. About the axis $\frac{1}{2}$ MR2b. Through one side $\frac{M}{4}(R^2 + \frac{l^2}{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## Solved Examples

10. The angular speed of a motor wheel is increased from 1200 rpm to 3120 rpm in 16 seconds.
(i) What is its angular

acceleration, assuming the acceleration to be uniform? (ii) How many revolutions does the engine make during this time?

Sol. i. We shall use  $\omega = \omega_0 + \alpha t$  $\omega_0$  = initial angular speed in rad/s =  $2\pi \times$  angular speed in rev/s  $=\frac{2\pi \times \text{angular speed in rev/min}}{2\pi \times \text{angular speed in rev/min}}$ 60s/min  $=\frac{2\pi \times 1200}{60}$  = 40 $\pi$  rad/s Similarly  $\omega$  = final angular speed in rad/s  $=\frac{2\pi\times3120}{60}=2\pi\times52$ =  $104\pi$  rad/s . Angular acceleration  $\alpha = \frac{\omega - \omega_0}{t} = 4\pi \, rad/s^2$ The angular acceleration of the engine =  $4\pi \operatorname{rad}/\operatorname{s}^2$ ii. The angular displacement in time t is given by  $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$  $= \left(40\pi \times 16 + \frac{1}{2} \times 4\pi \times 16^2\right).$  $= (640\pi + 512\pi) = 1152\pi$  rad Number of revolutions =  $\frac{1152\pi}{2\pi}$ = 576 11. The angular speed of a motor wheel is increased from 1200 rpm to 3120 rpm in 16 seconds. i. What is its angular acceleration, assuming the acceleration to be uniform? ii. How many revolutions does the engine make during this time? We shall use  $\omega = \omega_0 + \alpha t$ Sol.  $\omega_0$  = initial angular speed in  $rad/s = 2\pi \times angular speed in$ rev/s  $= \frac{2\pi \times \text{angular speed in rev/min}}{60 \text{ s/min}}$  $=\frac{2\pi\times1200}{60}$  rad/s = 40 $\pi$  rad/s

Similarly  $\omega$  = final angular  $= \frac{2\pi \times 3120}{60} \text{ rad/s} = 2\pi \times 52 \text{ rad/s}$ =  $104\pi$  rad/s Angular acceleration, ...  $\alpha = \frac{\omega - \omega_0}{t} = 4\pi \text{ rad/s}^2$ The angular acceleration of the engine =  $4\pi$  rad/s<sup>2</sup> ii. The angular displacement in time t is given by  $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ =  $(40\pi \times 16 + \frac{1}{2} \times 4\pi \times 16^2)$  rad =  $(640\pi + 512\pi)$  rad =  $1152\pi$  rad Number of revolutions =  $\frac{1152\pi}{2\pi}$ An electron of mass  $9 \times 10^{-31}$  kg revolves in a circle of radius 0.53 A° around the nucleus of hydrogen with a velocity of  $2.2 \times 10^6$ ms<sup>-1</sup>. Show that its angular momentum is equal to  $\frac{h}{2\pi}$ , where h is Planck's constant. Given,  $m = 9 \times 10^{-31}$ kg,  $r = 0.53 A^{\circ} = 0.53 \times 10^{-10} m$  $v = 2.2 \times 10^6 \text{ ms}^{-1}$ ,  $h = 6.6 \times 10^{-34} \text{ Js}$ L = mvr $= 9 \times 10^{-31} \times 2.2 \times 10^{6} \times 0.53 \times 10^{-10}$  $= 1.0494 \times 10^{-34} \text{ Js} - (1)$ We have  $\frac{h}{2\pi} = \frac{6.6 \times 10^{-34}}{2 \times 3.14} = 1.0504 \times 10^{-34} \text{ Js} \_ (2)$ From eqns. (1) and (2), we get,  $L \cong \frac{h}{2\pi}$ 

12.

Sol.