SSLC MODEL EXAMINATION , MARCH - 2021

ME 927 MATHEMATICS - DETAILED ANSWER KEY

Qn no.	Key
For questions from 1 to 5 one score each .	
1	What is the common difference of the arithmetic sequence $4,10,16, \ldots$? $[4,5,6,10]$
	Answer. $10-4=6$
2	In the figure O is the centre of the circle. Write the measure of $\angle A C B$. [$30^{\circ}, 60^{\circ}, 90^{\circ}, 100^{\circ}$]
	Answer. 90°
3	In triangle $\mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}, \angle \mathrm{P}=45^{\circ}, \mathrm{QR}=5$ centimetres. What is the length of PR ? $\left[10 \sqrt{2}, 5 \sqrt{2}, 10, \frac{5}{\sqrt{2}}\right]$
	Answer. $5 \sqrt{2}$

4 Which of the following is a point on the x-axis?
$[(3,0),(0,3),(-3,2),(0,-2)]$

Answer.

$(3,0)$
5
Which of the following is the midpoint of the line joining $(6,2)$ and $(12,2) ?$ $[(8,2),(10,2),(2,8),(9,2)]$

Answer.
$(9,2)$

$$
\left[\left(\frac{6+12}{2}, \frac{2+2}{2}\right)=\left(\frac{18}{2}, \frac{4}{2}\right)\right]
$$

For questions from 6 to 10 carries 2 scores each .
6 Algebraic form of an arithmetic sequence is $3 n+2$.
(a) What is its first term ?
(b) Find its $10^{\text {th }}$ term.

Answer.

a) First term $=3 \times 1+2=3+2=5$
b) $x_{10}=3 \times 10+2=30+2=32$
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are points on the circle with centre O. $\angle \mathrm{AOC}=100^{\circ}$.

(a) What is the measure of $\angle \mathrm{ADC}$?
(b) Find $\angle \mathrm{ABC}$.

	Answer. a) $\angle A D C=\frac{100}{2}=50^{\circ}$ (The angle made by an arc on its alternate arc is half its central angle) b) $\angle A B C=180-50=130^{\circ}$ quadrilateral are supplementary)
8	One is asked to say a natural number from 1 to 20 . (a) What is the probability of it being an even number ? (b) What is the probability of it being a multiple of 5 ?
	Answer. a) Favourable results $=2,4,6,8,10,12,14,16,18,20$ Probability of the number being an even number $=\frac{\text { number of favourable resuts }}{\text { total number of results }}=\frac{10}{20}$ b) Favourable results $=5,10,15,20$ Probability of the number being an multiple of $5=\frac{\text { number of favourable resuts }}{\text { total number of results }}=\frac{4}{20}$
9	Write the second degree polynomial $x^{2}-16$ as the product of two first degr polynomials.
	Answer. $x^{2}-16=x^{2}-4^{2}=(x+4)(x-4)$
10	In the figure, the sides of the rectangle $A B C D$ are parallel to the axes. Two of its vertices are $A(3,1)$ and $C(-3,-1)$. Write the coordinates of B and D.

Answer.

Coordinates of $\mathbf{B}=(-3,1)$
Coordinates of $\mathbf{D}=(3,-1)$
For questions from 11 to 20 carries 3 scores each .

11 The $5^{\text {th }}$ term of an arithmetic sequence is 20 and the $8^{\text {th }}$ term is 32 .
(a) What is the common difference of this sequence ?
(b) Find its $11^{\text {th }}$ term.

Answer.
a) commondifference $=\frac{\text { termdifference }}{\text { positiondifference }}=\frac{32-20}{8-5}=\frac{12}{3}=4$
b) $x_{11}=x_{5}+6 d=20+6 \times 4=20+24=44$ or $x_{11}=x_{8}+3 d=32+3 \times 4=32+12=44$
$12 x$ is a natural number.
(a) What number should be added to $x^{2}+2 x$ to get a perfect square ?
(b) If $x^{2}+2 x=15$. Find the natural number represented by x.

Answer.

a) 1

$$
\left(x^{2}+2 x+1=(x+1)^{2}\right)
$$

b) $x^{2}+2 x+1=15+1 \quad \Rightarrow \quad(x+1)^{2}=16 \quad \Rightarrow=>\quad x+1=\sqrt{16}=4 \Rightarrow=>\quad x=4-1=3$

13 The vertices of a triangle are points on a circle of radius 3 centimetres. If two angles of this triangle are 50° and 60°, draw the triangle.

Answer.

14 The chords $A B$ and $C D$ intersect at $P . A B=17$ centimetres, $P A=9$ centimetres, $P D=12$ centimetres.

(a) What is the length of PB ?
(b) Find the length of PC.

Answer.
a) $P B=17-9=8 \mathrm{~cm}$
b) $P C \times P D=P A \times P B==>\quad P C \times 12=9 \times 8 \Rightarrow P C=\frac{9 \times 8}{12}=6 \mathrm{~cm}$

15

In triangle $\mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{AB}=3$ centimetres, $\cos \mathrm{A}=\frac{3}{5}$.

(a) What is the length of AC?
(b) Find $\sin \mathrm{A}$.

Answer.

A) $\cos A=\frac{\text { opposite side of } \angle A}{\text { hypotenuse }}=\frac{3}{5}==>\quad \frac{A B}{A C}=\frac{3}{5}$

$$
A B=3 \mathrm{~cm}==>\quad A C=5 \mathrm{~cm}
$$

b) $B C=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4 \mathrm{~cm}$

$$
\sin A=\frac{\text { opposite side of } \angle A}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{4}{5}
$$

16
In the figure, the circle touches the sides of the quadrilateral PQRS at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . $\mathrm{PA}=5$ centimetres, $\mathrm{QB}=4$ centimetres, $\mathrm{RC}=3$ centimetres, $\mathrm{SD}=2$ centimetres.

(a) What is the length of PD ?
(b) Find the perimeter of the quadrilateral PQRS .

Answer.

a) $P D=P A=5 \mathrm{~cm}$
(The tangents to a circle from a point are of the same length)
b) $Q A=Q B=4 \mathrm{~cm}$

$$
R B=R C=3 \mathrm{~cm}
$$

$$
S C=S D=2 \mathrm{~cm} \quad \Rightarrow=>\quad P Q=5+4=9 \mathrm{~cm} \quad, \quad Q R=4+3=7 \mathrm{~cm}
$$

$$
R S=3+2=5 \mathrm{~cm}, \quad P S=5+2=7 \mathrm{~cm}
$$

Perimeter of the quadrilateral $\operatorname{PQRS}=P Q+Q R+R S+P S=9+7+5+7=28 \mathrm{~cm}$
17 The base radius and slant height of a cone are 6 centimetres and 10 centimetres respectively.
(a) What is its height ?
(b) Find its volume.

Answer.

a) Height $=\sqrt{10^{2}-6^{2}}=\sqrt{100-36}=\sqrt{64}=8 \mathrm{~cm}$
b) Volume $=\frac{1}{3} \times \pi \times r^{2} \times h=\frac{1}{3} \times \pi \times 6^{2} \times 8=96 \pi \mathrm{cu} . \mathrm{cm}$
$18(3,4)$ is a point on a circle with centre at the origin.
(a) Find its radius.
(b) Write the coordinates of the points where the circle cuts the x-axis.

Answer.

a) radius $=\sqrt{(3-0)^{2}+(4-0)^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5$
b)Coordinates of the points where the circle cuts the \mathbf{x}-axis $=(5,0),(-5,0)$

Draw a circle of radius 3 centimetres. Mark a point A on the circle and draw tangent 19 through A.

Answer.

20 In the figure, the area of the rectangle is 40 square centimetres.

(a) What is the area of the shaded triangle?
(b) If a dot is put in the figure without looking into it. What is the probability of it being inside the shaded triangle?

Answer.

a) Area of the shaded triangle $=\frac{40}{2}=20$ sq. cm
b) Probability of the dot being inside the triangle $=\frac{\text { Area of the triangle }}{\text { Area of the rectangle }}=\frac{20}{40}=\frac{1}{2}$

For questions from 21 to 30 carries 4 scores each .

21 The $10^{\text {th }}$ term of an arithmetic sequence is 20 and its $20^{\text {th }}$ term is 10 .
(a) What is its common difference?
(b) What is its $30^{\text {th }}$ term ?
(c) Which is the first negative term of this sequence ?

Answer.

a) commondifference $=\frac{\text { termdifference }}{\text { positiondifference }}=\frac{10-20}{20-10}=\frac{-10}{10}=-1$
b) $\quad x_{30}=x_{20}+10 d=10+10 \times-1=10-10=0$
or $x_{30}=x_{10}+20 d=20+20 \times-1=20-20=0$
c) $0-1=-1$
$221,3,5, \ldots \ldots$ is an arithmetic sequence.
(a) What is its $20^{\text {th }}$ term ?
(b) Find the sum of first 20 terms of this sequence.
(c) What is the sum of first 20 terms of the arithmetic sequence $6,8,10, \ldots$?

Answer.

a) $x_{20}=x_{1}+19 d=1+19 \times 2=1+38=39$
b) $\quad S_{20}=\frac{20}{2} \times\left(x_{1}+x_{20}\right)=\frac{20}{2} \times(1+39)=\frac{20}{2} \times 40=400$
c) $400+20 \times 5=400+100=500$
(5 added to each term of the arithmetic sequence $1,3,5, \ldots .$. gives the sequence $\mathbf{6 , 8 , 1 0 , \ldots \text {) }}$

23
In the figure, O is the centre of the circle. $A B$ and $C D$ are two perpendicular chords. $\angle \mathrm{D}=20^{\circ}$.

(a) Write the measure of $\angle \mathrm{A}$.
(b) What is the central angle of arc BQD ?
(c) What is the central angle of arc APC ?

	Answer.
	a) $\angle \mathrm{A}=90-20=70^{\circ}$
	b) Central angle of arc BQD $=2 \times \angle B A D=2 \times 70=140^{\circ} \quad$ (Central angle of
	an arc is double the angle made by it on the alternate arc)
	c) Central angle of arc APC $=2 \times \angle A D C=2 \times 20^{\circ}=40^{\circ}$
24	(a) Perimeter of a rectangle is 40 centimetres. Write a pair of numbers that can be the measures of its sides. (b) Perimeter of a rectangle is 40 centimetres and its area is 84 square centimetres. Find the lengths of its sides.
	Answer.
	a) 12,8 or any pair of numbers with sum 20
	b) Shorter side $=10-x$, Longer side $=10+x \quad$ (or any other method)
	$100-x^{2}=84 \quad==>\quad x^{2}=100-84=16 \quad \Rightarrow \quad x=\sqrt{16}=4$
	Shorter side $=10-4=6 \mathrm{~cm}$
	Longer side $=10+4=14 \mathrm{~cm}$
25	A box contains 6 black beads and 4 white beads. Another box contains 5 black beads and 3 white beads. If we take one bead from each box without looking : (a) What is the total number of pairs? (b) What is the probability that both are black? (c) Find the probability of one being black and the other being white.
	Answer.
	a) Total number of pairs $=10 \times 8=80$
	b) Probability that both are black $=\frac{6 \times 5}{80}=\frac{30}{80}=\frac{3}{8}$
	c) Probability of one being and the other being white black =
	$\frac{6 \times 3+4 \times 5}{80}=\frac{18+20}{80}=\frac{38}{80}=\frac{19}{40}$

26
(a) $\mathrm{P}(x)=x^{2}-5 x+10$. What number is $\mathrm{P}(2)$?
(b) Write $\mathrm{P}(x)-\mathrm{P}(2)$ as the product of two first degree polynomials.

Answer.

a) $p(2)=2^{2}-5 \times 2+10=4-10+10=4$
b) $p(x)-p(2)=x^{2}-5 x+10-4=x^{2}-5 x+6$
$x-2$ is a factor of $\quad p(x)-p(2)$

$$
p(x)-p(2)=x^{2}-5 x+6=(x-2)(x-3)
$$

27 (a) Draw a circle of radius 3 centimetres.
(b) Mark a point P at a distance of 7 centimetres from its centre.
(c) Draw tangents from P to this circle.

Answer.

In the figure, ABCD is a parallelogram, $\angle \mathrm{A}=30^{\circ}, \mathrm{AB}=12$ centimetres, $\mathrm{AD}=6$ centimetres.

(a) Find the length of DE.
(b) Find the area of the parallelogram $A B C D$.

	Answer. a) $D E=3 \mathrm{~cm}$ (The sides of a triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ are in the ratio $1: \sqrt{3}: 2 \quad \text {) }$ b) Area of the parallelogram $\mathbf{A B C D}=A B \times D E=12 \times 3=36 \mathrm{sq} . \mathrm{cm}$
29	The marks got by 6 students in an examination are given below. $26,21,32,38,45,48$ (a) Find the mean of the marks. (b) What is the median mark ?
	Answer. a) Mean $=\frac{26+21+32+38+45+48}{6}=\frac{210}{6}=35$ b) $21,26,32,38,45,48$ Median $=$ Half the sum of marks $3^{\text {rd }}$ and $4^{\text {th }}$ students. $=\frac{32+38}{2}=\frac{70}{2}=35$
30	A circle with centre at the origin cuts the y-axis at the point $(0,5)$. (a) Write the coordinates of other two points on this circle. (b) What is the radius of this circle? (c) Verify whether the point $(4,4)$ lies on this circle.
	Answer. a) $(0,-5),(5,0)$ or $(5,0),(-5,0)$ b) Radius $=5$ c) $\sqrt{(4-0)^{2}+(4-0)^{2}}=\sqrt{32} \quad(\sqrt{32}$ is larger than $5=\sqrt{25}$) Since the distance from the centre of the circle to the point $(4,4)$ is more than the radius, $(4,4)$ is outside the circle . That is $(4,4)$ does not lie on the circle .

31 Look at the following number pattern.

		1		
	2	3	4	
5	6	7	8	9

(a) Write the next line of this pattern.
(b) Write the sequence of last numbers in each line.
(c) What will be the last number in the $9^{\text {th }}$ line ?
(d) Write the first and last numbers of the $10^{\text {th }}$ line.

Answer.

a) $10,11,12,13,14,15,16$
b) $1,4,9,16,25, . .$.
c) Last number in the $\mathbf{9}^{\text {th }}$ line $=9^{2}=81$
d) First number in the $\mathbf{1 0}^{\text {th }}$ line $=81+1=82$

Last number in the $10^{\text {th }}$ line $=10^{2}=100$
32 (a) Draw the x, y axes and mark the points $\mathrm{A}(1,0), \mathrm{B}(6,0), \mathrm{C}(8,3), \mathrm{D}(3,3)$.
(b) Write the most suitable name for quadrilateral $A B C D$.
(c) Find its area.

Answer.

a)

b) Parallelogram

35 In the figure, the circle touches the sides of triangle ABC at P, Q and $\mathrm{R} . \angle \mathrm{A}=70^{\circ}$, $\angle B=60^{\circ}$.

(a) What is the measure of $\angle \mathrm{BPQ}$?
(b) What is $\angle \mathrm{PRQ}$?
(c) Find the measures of other two angles of triangle PQR .

Answer.

a) (The tangents to a circle from a point are of the same length)
$\angle B P Q=60^{\circ}$

$$
\left(\angle B P Q=\angle B Q P=\frac{180-60}{2}=\frac{120}{2}=60^{\circ}\right)
$$

b) $\angle P R Q=60^{\circ}$ (In a circle, the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side)
c) $A P=A R \quad==>\quad \angle A P R=\angle A R P=\frac{180-70}{2}=\frac{110}{2}=55^{\circ}$

$$
==>\quad \angle P Q R=55^{\circ}
$$

$\angle Q P R=65^{\circ} \quad$ (In triangle PQR $\angle P R Q=60^{\circ}, \angle P Q R=55^{\circ}$)

36 The sum of first 31 terms of an arithmetic sequence is 620 .
(a) What is its $16^{\text {th }}$ term ?
(b) What is the sum of $15^{\text {th }}$ and $17^{\text {th }}$ terms ?
(c) Find the sum of first and $31^{\text {st }}$ terms.

	Answer.
	a) $x_{16}=\frac{620}{31}=20$ $\left(\right.$ Sum of first 31 terms $=31 \times$ midterm $\left.=31 \times x_{16}\right)$ b) $x_{15}+x_{17}=2 \times x_{16}=2 \times 20=40$ c) $x_{1}+x_{31}=x_{15}+x_{17}=40$
37	(a) The circle touches the sides of triangle $A B C$ at P, Q and $R, \angle A=50^{\circ}$. What is $\angle P O Q$? (b) Draw a circle of radius 2 centimetres. Draw the triangle with two angles 50° and 70° and all its sides as tangents to this circle.
	Answer. a) $\angle P O Q=180-50=130^{\circ}$ (In a circle, the angles between the radii through two points and the angle between the tangents at these points are supplementary)

38
The diameters of two spheres are in the ratio $2: 3$.
(a) What is the ratio of their radii ?
(b) Find the ratio of their surface areas.
(c) If the surface area of the first sphere is 16π square centimetres. Find the surface area of the second sphere.

Answer.

a) $\quad r_{1}: r_{2}=2: 3$
b) $\quad r_{1}=2 r, r_{2}=3 r$
b) Ratio of the surface areas $=4 \times \pi \times(2 r)^{2}: 4 \times \pi \times(3 r)^{2}=4: 9$
c) Surface area of the second sphere $=\frac{9 \times 16 \pi}{4}=36 \pi$ sq. cm

The following table shows the students in a class sorted according to their heights.

Height (centimetres)	Number of Students
$130-140$	9
$140-150$	10
$150-160$	10
$160-170$	9
$170-180$	7
Total	45

(a) If the students are arranged in the increasing order of their heights, student at what position will be in the middle ?
(b) What is assumed to be the height of the $20^{\text {th }}$ student?
(c) Find the median height.

Height	Number of students
Below 140	9
Below 150	19
Below 160	29
Below 170	38
Below 180	45

a) $\frac{N+1}{2}=\frac{45+1}{2}=23$
Median $=$ Height of the $\mathbf{2 3}^{\text {rd }}$ student $=x_{23}$
Median comes between 150 and 160 .
There are 10 students in the median class .
Divide the distance between 150 and 160 in to 10 equal parts .

$$
\text { A portion }=\frac{160-150}{10}=\frac{10}{10}=1=d
$$

Assume that the height of the students in the median class come at the mid point of these subdivisions.

b) Height of the $\mathbf{2 0}^{\text {th }}$ student $=\quad x_{20}=\frac{150+151}{2}=\frac{301}{2}$
(Heights of the students in the median class are in arithmetic sequence)
c) Median $=x_{23}=x_{20}+3 d=\frac{301}{2}+3 \times 1=\frac{301}{2}+3=150.5+3=153.5 \mathrm{~cm}$
(a) The figure shows a ladder leaning against a wall. It makes an angle 60° with the floor. The foot of the ladder is 2 metres away from the wall. Find the length of the ladder.

(b) If the same ladder is kept such that the angle with the floor is 30°, how high will its top be from the floor? How far is the foot of the ladder from the wall?

	Answer. a) Length of the ladder $=4 \mathrm{~m}$ (The sides of a triangle of angles $30^{\circ}, 60^{\circ}, 90^{\circ}$ are in the ratio $1: \sqrt{3}: 2 \quad \text {) }$ b) Distance between the top of the ladder $\text { and the floor }=2 \mathrm{~m}$ Distance between the foot of the ladder $\text { and the floor }=2 \sqrt{3} \mathrm{~m}$
41	In the figure, the chords $A B$ and $C D$ are extended to meet at $P . A B=4$ centimetres, $P C=5$ centimetres, $C D=7$ centimetres. (a) What is the length of PD ? (b) If the length of PA is taken as x, then what is the length of PB ? (c) Form a second degree equation in x and find the length of PA.
	Answer. a) $P D=5+7=12 \mathrm{~cm}$ b) $P B=x+4$ c) $\quad P B \times P A=P D \times P C \quad==>\quad(x+4) x=12 \times 5 \quad==>\quad x^{2}+4 x=60$ $\begin{aligned} & x^{2}+4 x+2^{2}=60+2^{2} \quad=>\quad(x+2)^{2}=64 \quad \Rightarrow \quad x+2=\sqrt{64}=8 \\ & x=8-2=6 \quad==>\quad P A=6 \mathrm{~cm} \end{aligned}$

42
The coordinates of the end points of a diameter of a circle are $(3,4)$ and $(-3,-4)$.
(a) Write the coordinates of the centre of the circle.
(b) What is the radius of the circle?
(c) Write the equation of this circle.

Answer.

a) $\left(\frac{3+(-3)}{2}, \frac{4+(-4)}{2}\right)=\left(\frac{0}{2}, \frac{0}{2}\right)=(0,0)$
b) Radius $=\sqrt{(3-0)^{2}+(4-0)^{2}}=\sqrt{9+16}=\sqrt{25}=5$

c) If (x, y) is a point on this circle,

$$
(x-0)^{2}+(y-0)^{2}=5^{2} \Rightarrow=x^{2}+y^{2}=25 \quad \Rightarrow \quad x^{2}+y^{2}-25=0
$$

43 The base radius and height of a cylindrical block of wood are 8 centimetres and 15 centimetres. A cone of maximum size is carved out of this.
(a) What are the radius and height of the cone?
(b) Find its slant height.
(c) Find the curved surface area of this cone.

Answer.

a) Radius $=8 \mathrm{~cm}$, Height $=15 \mathrm{~cm}$
b) Slant height $=\sqrt{8^{2}+15^{2}}=\sqrt{64+225}=\sqrt{289}=17 \mathrm{~cm}$
c) Curved surface area $=\pi \times r \times l=\pi \times 8 \times 17=136 \pi$ sq.cm

In the figure, $\angle \mathrm{AEB}=90^{\circ}, \angle \mathrm{C}=50^{\circ}, \angle \mathrm{D}=130^{\circ}$.

	Answer. a) E is on the circle . b) C is outside the circle and \mathbf{D} is inside the circle . (The angle formed by joining the end points of diameter of a circle to a point inside the circle is greater than 90°, on the circle is 90° and outside the circle is less than 90°) c) $\angle C+\angle D=50+130=180^{\circ}$. Since the opposite angles are supplementary , ABCD is a cyclic quadrilateral . That is, it is possible to draw a circle through the four points A, B, C and D.
45	Read the following mathematical concept and answer the questions that follow. Let us examine the natural numbers, which are powers of 2 . (a) Which of the following cannot be the digit in the ones place of a power of 2 ? $[2,3,4,6]$ (b) Which of the following is the ones place digit in 2^{9} ? $[2,3,4,6]$ (c) What is the ones place digit in 2^{100} ? $[2,4,6,8]$ (d) The ones place digit of 2^{n} is 6 . Then the number n can be: $[12,13,14,15]$

(e) $\mathrm{m}+\mathrm{n}=26$, then what is the ones place digit of $2^{\mathrm{m}} \times 2^{\mathrm{n}}$?

$$
[2,8,4,6]
$$

Answer.
a) 3
b) 2
c) 6
d) 12
e) 4

