SSLC Model Examination March 2021

Mathematics - English Version.
 Detailed Solutions with Questions.

 Prepared by Dr.V.S. Raveendranath.
Question. 1

What is the common difference of the arithmetic sequence $4,10,16, \ldots$?
[$4,5,6,10$]

Solution.

Given sequence $=4,10,16, \ldots .$.
Common difference $=x_{2}-x_{1}$

$$
=10-4=6 .
$$

Question. 2.

In the figure O is the centre of the circle. Write the measure of $\angle A C B$. [$30^{\circ}, 60^{\circ}, 90^{\circ}, 100^{\circ}$]

Solution.

$\angle A C B=90^{\circ}$ (Angle in semi circle).

 drvsr
Question. 3.

In triangle $\mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}, \angle \mathrm{P}=45^{\circ}, \mathrm{QR}=5$ centimetres. What is the length of PR ?
$\left[10 \sqrt{2}, 5 \sqrt{2}, 10, \frac{5}{\sqrt{2}}\right]$

Solution.

$\triangle P Q R$ be rt. isosceles triangle
$\therefore \angle P=\angle R 45^{\circ}$.
Angles: $45^{\circ}, 45^{\circ}, 90^{\circ}$.
Sides: 1 : 1: V2.
$\prod_{\mathrm{x}} \prod_{\mathrm{x}} \prod_{\mathrm{v} 2 \mathrm{x}}$.
${ }^{P}$
$P R=x \sqrt{2}=5 \sqrt{2}$
drvsr
Question. 4.
Which of the following is a point on the x-axis?

$$
[(3,0),(0,3),(-3,2),(0,-2)]
$$

Solution.
$(3,0),[y=0$ becomes x axis)
drvsr

Question. 5.

Which of the following is the midpoint of the line joining $(6,2)$ and $(12,2)$? $[(8,2),(10,2),(2,8),(9,2)]$

Solution.

$$
x_{1}, y_{1} x_{2}, y_{2}
$$

Given points $=(6,2)(12,2)$
Mid point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{6+12}{2}, \frac{2+2}{2}\right) \\
& =\left(\frac{18}{2}, \frac{4}{2}\right)=(9,2) .
\end{aligned}
$$

Question. 6.

Algebraic form of an arithmetic sequence is $3 n+2$.
(a) What is its first term ?
(b) Find its $10^{\text {th }}$ term.

Solution.
Given $x_{n}=3 n+2$
(a). Put $n=1$, get the first term
ie., first term $=3 \times 1+2=5$.
(b) $10^{\text {th }}$ term ; put $n=10$

$$
\text { ie., } 3 \times 10+2=32 \text {. }
$$

drvsr.

Question. 7.

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are points on the circle with centre $\mathrm{O} . \angle \mathrm{AOC}=100^{\circ}$.

(a) What is the measure of $\angle \mathrm{ADC}$?
(b) Find $\angle \mathrm{ABC}$,

Solution.

Given $\angle A O C=100^{\circ}$.
a). Measure of $\angle A D C=\frac{1}{2} \times 100$

$$
=50^{\circ} .
$$

b) $\angle A B C=180-50=130^{\circ}$.
[$A B C D$ be a cyclic quadrilateral]
drvsr

Question. 8.

One is asked to say a natural number from 1 to 20.
(a) What is the probability of it being an even number:
(b) What is the probability of it being a multiple of 5 ?

Solution.

a) Given natural numbers 1 to 20 .

Total numbers $n(N)=20$.
From this even numbers
$=2,4,6,8,10,12,14,16,18,20$
ie., $n(F)=10$.
Hence the probability $=n(F) / n(N)$

$$
=\frac{10}{20}=\frac{1}{2}
$$

b) Multiple of 5 are $5,10,15,20$.
ie., $n(F)=4$

Hence the probability $=n(F) / n(N)$
 $$
=\frac{4}{20}=\frac{1}{5}
$$

Question. 9.

Write the second degree polynomial $x^{2}-16$ as the product of two first degree polynomials.

Solution.

Given polynomial $=x^{2}-16$
The first drgree polynomial

$$
\begin{aligned}
= & (x+4)(x-4) \\
& {\left.\left[\because(a+b)(a-b)=a^{2}-b^{2}\right)\right] }
\end{aligned}
$$

Question. 10.
I n the figure the sides of the rectangle $A B C D$ are parallel to the axes. Two of its vertices are $A(3,1)$ and $C(-3,-1)$. Write the coordinates of B and D.

Solution.

From the figure we can directly observed that
 $B(+3,1)$ and $D(3,-1)$.

drvsr
Question. 11.
The $5^{\text {th }}$ term of an arithmetic sequence is 20 and the $8^{\text {th }}$ term is 32
(a) What is the common difference of this sequence?
(b) Find its $11^{\text {th }}$ term.

Solution.

Given, $5^{\text {th }}$ term of an AP is 20 and $8^{\text {th }}$ term is 32.
a)

Here we know that, term difference is proportional to position difference, and the constant of proportionality is the common difference ie., $\frac{X_{m}-X_{n}}{m-n}=d$

$$
\text { ie. } \frac{32-20}{8-5}=\frac{12}{3}=4 \text {. }
$$

$$
\text { b). Given } 5^{\text {th }} \text { term }=20
$$

$$
\text { ie., } f+4 d=20
$$

$$
f+4 \times 4=20
$$

$$
f=20-16=4
$$

$$
\text { Hence } 11^{\text {th }} \text { term }=f+10 d
$$

$$
=4+10 \times 4
$$

$$
=44 .
$$

Question. 12.

$/ x$ is a natural number.
(a) What number should be added to $x^{2}+2 x$ to get a perfect square
(b) If $x^{2}+2 x=15$. Find the natural number represented by x.

Solution.

Given x is a natural number.
a) 1 is added to $x^{2}+2 x$ get a perfect square
$\left[\because x^{2}+2 x+1\right.$ be $(a+b)^{2}$ form $]$
b) Given $x^{2}+2 x=15$
[by square completion method or factorization method or quadratic method]
$x^{2}+2 x+1=15+1$
$(x+1)^{2}=16$.
$x+1=\sqrt{ } 16=4$.
$x=4-1=3$.
\therefore the natural number
representrd by $x=3$.
......................................drvsr

Question. 13.

The vertices of a triangle are points on a circle of radius 3 centimetres. If two angles of this triangle are 50° and 60°, draw the triangle.

Solution.

Construction:

Draw a circle with radius $3 \mathrm{~cm} O$ as the center. Draw $O B$ and make an $\angle A O B=100^{\circ}$
(2 $\times 50=100$) make an $\angle B O C=$ $120^{\circ} .(2 \times 60=120)$ and join $A B, B C$ and $A C$.

Question. 14.

The chords $A B$ and $C D$ intersect at P. $A B=17$ centimetres, $P A=9$ centimetres, $P D=12$ centimetres.

(a) What is the length of PB ?
(b) Find the length of PC.

Solution.

Given, $A B=17 \mathrm{~cm}, P A=9 \mathrm{~cm}$, $P D=12 \mathrm{~cm}$.
a) Length of $P B=A B-P B$

$$
=17-9=8 \mathrm{~cm}
$$

b) We know that $P A \times P B=P C \times P D$ ie., $9 \times 8=P C \times 12$ $P C=72 / 12=6 \mathrm{~cm}$.

Question. 15.

- In triangle $\mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{AB}=3$ centimetres, $\cos \mathrm{A}=\frac{3}{5}$.

(a) What is the length of $A C$?
(b) Find $\sin \mathrm{A}$.

Solution.
Given $\triangle A B C$ is a rt. triangle
$A B=3, \cos A=\frac{3}{5}$.
a) $\cos A=\frac{A d j}{H p y}=\frac{A B}{A C}=\frac{3}{5}$
ie., $\quad A C=5$.
b) Here $A B=3, A C=5$
$\triangle A B C$ is a rt. triangle

By Pythagoras,

$B C^{2}=A C^{2}-A B^{2}$
$=5^{2}-3^{2}=25-9=16$
$\therefore B C=\sqrt{ } 16=4$.
$\sin A=\frac{O p p}{H p y}=\frac{B C}{A C}=\frac{4}{5}$.

Question. 16.

In the figure, the circle touches the sides of the quadrilateral PQRS at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . $\mathrm{PA}=5$ centimetres, $\mathrm{QB}=4$ centimetres, $\mathrm{RC}=3$ centimetres, $\mathrm{SD}=2$ centimetres.

(a) What is the length of PD ?
(b) Find the perimeter of the quadrilateral $P Q R S$.

Solution.

Given $P A=5 \mathrm{~cm}, Q B=4 \mathrm{~cm}$,

$R C=3 \mathrm{~cm}, S D=2 \mathrm{~cm}$.

a) The length of $P D=P A=5 \mathrm{~cm}$ [length of same tangent] b).

From the figure perimetr
 $=P A+A Q+Q B+B R+R C+C S+S D+D P$
 $=5+4+4+3+3+2+2+5=28 \mathrm{~cm}$.

Question. 17.

The base radius and slant height of a cone are 6 centimetres and 10 centimetres respectively.
(a) What is its height?
(b) Find its volume.

Solution

Given, $r=6 \mathrm{~cm}, I=10 \mathrm{~cm}$.
a) Height $=\sqrt{1^{2}-h^{2}}=\sqrt{10^{2}-6^{2}}$

$$
\begin{aligned}
=\sqrt{100-36} & =\sqrt{64} \\
& =8 \mathrm{~cm} .
\end{aligned}
$$

b). Volume $=\frac{1}{3} \times \pi r^{2}$.

$=\frac{1}{3} \times \pi \times 6^{2} \times 8=96 \pi \mathrm{~cm}^{3}$ 3

Question. 18.

$(3,4)$ is a point on a circle with centre at the origin.
(a) Find its radius.
(b) Write the coordinates of the points where the circle cuts the x-axis.

Solution.

> Equation of the circle $x^{2}+y^{2}=r^{2}$ $\begin{gathered}\text { radius }=\sqrt{3^{2}+4^{2}} \\ =\sqrt{9+16}=\sqrt{25} \\ =5 .\end{gathered}$

Coordinates be $(5,0)$ or $(-5,0)$

drvsr

Question. 19.

Draw a circle of radius 3 centimetres. Mark a point A on the circle and draw tangent through A.

Solution.

Construction.

Draw a circle with a radius 3 cm O as its center. Draw OA line and draw perpendicular to
OA throw A.
.drvsr

Question. 20.

In the figure, the area of the rectangle is 40 square centimetres.

(a) What is the area of the shaded triangle?
(b) If a dot is put in the figure without looking into it. What is the probability of it being inside the shaded triangle?

Solution.

Given, the area of the rectangle $=40 \mathrm{~cm}^{2}$.
a) Area of the shsded triangle $=\frac{1}{2} \times 40=20 \mathrm{~cm} 2$.
b) Probability =
area of the shaded region
Total area of the rectangle

$$
=\frac{20}{40}=\frac{1}{2}
$$

drvsr

Question. 21.

The $10^{\text {th }}$ term of an arithmetic sequence is 20 and i its $20^{\text {th }}$ term is 10 .
(a) What is its common difference?
(b) What is its $30^{\text {th }}$ term ?
(c) Which is the first negative term of this sequence?

Solution.

Given, $10^{\text {th }}$ term $=20$,
$20^{\text {th }}$ term $=10$.
Here we know that , term difference is proportional to position difference, and the constant of proportionality is the common
difference ie., $\frac{X_{m}-X_{n}}{m-n}=d$
a) ie., $d=\frac{10-20}{20-10}=\frac{-10}{10}=-1$.

b). Given $10^{\text {th }}$ term -20

$$
\begin{aligned}
& \text { ie., } f+9 d=20 \\
& f+9 \times-1=20 \\
& f=20+9=29
\end{aligned}
$$

Hence the $30^{\text {th }}$ term $=f+29 d$

$$
=29+29 \times-1=0
$$

c). Here $30^{\text {th }}$ term is 0
\therefore the $31^{\text {st }}$ term be -1 .

Question. 22.
$1,3,5, \ldots \ldots$ is an arithmetic sequence.
(a) What is its $20^{\text {th }}$ term?
(b) Find the sum of first 20 terms of this sequence.
(c) What is the sum of first 20 terms of the arithmetic sequence $6,8,10, \ldots$?

Solution.

Give sequence 1, 3,5,
$f=1 ; d-3-1=2$.
a) $20^{\text {th }}$ term $=f+19 \mathrm{~d}$

$$
=1+19 \times 2=39
$$

b) Sum of $1^{\text {st }} 20$ term $=n^{2}$

$$
=20^{2}=400
$$

c). Given sequence $6,8,10, \ldots . .$.

$$
f=6, d=8-6=2
$$

$x_{20}=f+19 d=6+19 \times 2$

$$
=44 .\left(x_{n}\right)
$$

$$
\begin{aligned}
\text { Sum } & =\frac{n}{2}\left(x_{1}+x_{n}\right) \\
& =\frac{20}{2}(6+44)=500
\end{aligned}
$$

drvsr

Question. 23.

In the figure, O is the centre of the circle. $A B$ and $C D$ are two perpendicular chords. $\angle D=20^{\circ}$.

(a) Write the measure of $\angle \mathrm{A}$.
(b) What is the central angle of arc BQD ?
(c) What is the central angle of arc APC ?

Solution.

a) Measuremet of $\angle A$
$=180-(90+20)=70^{\circ}$
b). Center angle of arc BQD
$=2 \times \angle A=2 \times 70=140^{\circ}$.
c) Center angle of arc BAPC

$$
=2 \times \angle D=2 \times 20=40^{\circ}
$$

Question. 24.

(a) Perimeter of a rectangle is 40 centimetres. Write a pair of numbers that can be the measures of its sides.
(b) Perimeter of a rectangle is 41 centimetres and its area is 84 square centimetres. Find the lengths of its sides.

Solution.

a) Given perimeter $=40 \mathrm{~cm}$.
ie., $2(1+b)=40$

$$
1+b=40 / 2=20 .
$$

Here we can write so many pair of numbers. Only we get the sum of two numbers becomes 20 such as 13.7: 11.9 : 15,5: and so on.
b) Perimeter $=40 \mathrm{~cm}$ Area $=84 \mathrm{~cm}^{2}$.
ie., $2(1+b)=40$

$$
1+b=40 / 2=20
$$

Let length be ' x ' ,
breadth 20-x
Area $=84$
ie., $1 \times b=84$
$x(20+x)=84$
$20 x-x^{2}=84$
$x^{2}-20 x=-84$ (apply square completion method)
$x^{2}-20 x+100=-84+100$
$(x-10)^{2}=16$
$x-10=\sqrt{ } 16=4$
$x=4+10=14$.

Hence length $=14 \mathrm{~cm}$

breadth = 20-14 = 6 cm .

 drvsr
Question. 25.

A box contains 6 black beads and 4 white beads. Another box contains 5 black beads and 3 white beads. If we take one bead from each box without looking :
(a) What is the total number of pairs?
(b) What is the probability that both are black?
(c) Find the probability of one being black and the other being white. I

Solution.

	Box-1	Box-2
Black beads	6	5
White beads	4	3
Total	10	8

a) Total number of pairs
 $=m \times n=10 \times 8=80$.

b) Total number of both black $=m \times n=6 \times 5=30$.

Probability $=n(F) / n(N)=30 / 80$

$$
=3 / 8
$$

c) Probability being one black and one being white

$$
\begin{aligned}
& =\frac{4 \times 5}{80}+\frac{6 \times 3}{80}=\frac{20}{80}+\frac{18}{80} \\
& =\frac{38}{80}=\frac{19}{40} .
\end{aligned}
$$

Question. 26.

(a) $\mathrm{P}(x)=x^{2}-5 x+10$. What number is $\mathrm{P}(2)$?
(b) Write $\mathrm{P}(x)-\mathrm{P}(2)$ as the product of two first degree polynomials.

Solution.

a) Given $P(x)=x^{2}-5 x+10$
$P(2)=2^{2}-5 \times 2+10=4$.
b) $P(x)-P(2)=x^{2}-5 x+10-4$ $=x^{2}-5 x+6$ [factorize]

$$
=(x-3)(x-2)
$$

Question. 27.

(a) Draw a circle of radius 3 centimetres.
(b) Mark a point P at a distance of 7 centimetres from its centre.
(c) Draw tangents from P to this circle.

Solution.

a)
b)
c)

Question. 28.

In the figure, ABCD is a parallelogram, $\angle \mathrm{A}=30^{\circ}, \mathrm{AB}=12$ centimetres; $\mathrm{AD}=6$ centimetres.

(a) Find the length of DE.
(b) Find the area of the parallelogram ABCD .

Solution.

Given $A B=12 \mathrm{~cm}, A D=6 \mathrm{~cm}, \angle A=$ 30°.
$\triangle A E D$ be a rt. Triangle. $30^{\circ}, 60^{\circ}, 90^{\circ}$.
$1: \sqrt{ } 3: 2$
[see the question figure]

Angles: $30^{\circ}, 60^{\circ}, 90^{\circ}$.
Sides

a) Length of $D E=x=3 \mathrm{~cm}$.
b) Area of $A B C D=b h$

$$
=12 \times 3=36 \mathrm{~cm}^{2}
$$ drvsr

Question. 29.

The marks got by 6 students in an examination are given below. $26,21,32,38,45,48$
(a) Find the mean of the marks.
(b) What is the median mark ?

Solution.

Given data

$$
=26,21,32,38,45,48 .
$$

a)Mean = Sum $/ \mathrm{N}$

$$
\begin{aligned}
& =26+21+32+38+45+48 / 6 \\
& =210 / 6=35 .
\end{aligned}
$$

b). Median

Arrange the data in assenting order
ie., $21,26,32,38,45,48$
$\frac{32+38}{2}=\frac{70}{2}=35$.

Question. 30.

- A circle with centre at the origin cuts the y-axis at the point $(0,5)$.
(a) Write the coordinates of other two points on this circle.
(b) What is the radius of this circle?
(c) Verify whether the point $(4,4)$ lies on this circle.

Solution.

a) Other points

$$
(0,-5),(5,0),(-5,0)
$$

b) Radius $=5$.
c) Find the distance between the points $(4,4)$ and $(0,0)$

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}} & =\sqrt{4^{2}+4^{2}}=\sqrt{16+16} \\
& =\sqrt{32}
\end{aligned}
$$

we can see that $\sqrt{32}$ is grater than the radiou 5 .
Hence the the point is not lies on the circle.
drvsr
Question. 31.
Look at the following number pattern.

(a) Write the next line of this pattern.
(b) Write the sequence of last numbers in each line.
(c) What will be the last number in the $9^{\text {th }}$ line?
(d) Write the first and last numbers of the. $10^{\text {th }}$ line.

Solution.

a) Next lines of this pattern $\begin{array}{lllllll}10 & 11 & 12 & 3 & 14 & 15 & 16 .\end{array}$

b) Last number in each line $1,4,9,16$, 25
c) Number in the $9^{\text {th }}$ line $9^{2}=81$.
d) First number of $10^{\text {th }}$ line $=82$. $\left[\because 9^{\text {th }}\right.$ line number $\left.=81\right]$
Last number of $10^{\text {th }}$ line

$$
=10^{2}=100
$$

Question. 32.
(a) Draw the x, y axes and mark the points $\mathrm{A}(1,0), \mathrm{B}(6,0), \mathrm{C}(8,3), \mathrm{D}(3,3)$.
(b) Write the most suitable name for quadrilateral $A B C D$.
(c) Find its area.

Solution.

b) $A B C D$ be a Parallelogram.
c) Area $=b h$

$$
=5 \times 3=15 . \text { sq.unit }
$$

.drvsr

Question. 33.

1. Da) Draw a rectangle of sides 6 centimetres and 3 centimetres.
(b) Draw a square of same area.

Solution.

a)
b)

Question. 34.

In triangle $\mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{C}=30^{\circ}, \angle \mathrm{ADC}=120^{\circ}$. Also $\mathrm{DC}=10$ centimetres.

(a) What is $\angle \mathrm{DAC}$?
(b) What is the length of $A D$?
(c) Find $\angle \mathrm{ADB}$.
(d) Find the lengths of $B D$ and $A C$.

Solution.

Given, $\angle B=90^{\circ} \angle A D C=120^{\circ}$
$D C=10 \mathrm{~cm} . \angle C=30^{\circ}$.
a) In $\triangle A D C, \angle A=180-(120+$
30) $=30^{\circ}$.

In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}=180-(90+30+30)=30^{\circ}$.
$\therefore \angle \mathrm{DAC}=30^{\circ}$.
$\triangle \mathrm{ABD}$ be a rt. triangle, $30^{\circ}, 60^{\circ}, 90^{\circ}$.
$1: \sqrt{ } 3: 2$
[see the question figure]

Angles: $30^{\circ}, 60^{\circ}, 90^{\circ}$.
Sides:

$$
\begin{gathered}
1: \sqrt{3}: 2 \\
x: 2 x
\end{gathered}
$$

$B D=10 / 2=5 \mathrm{~cm} ;(x)$
$B C=5+10=15 \mathrm{~cm}$
$A B=x \sqrt{ } 3=5 \sqrt{ } 3$
b). $A D=2 x=10 \mathrm{cn}$
c). Length of $B D=5 \mathrm{~cm}$.

In rt. triangle $A B C$

$$
\begin{aligned}
& \text { Length of } A C=\sqrt{A B^{2}+B C^{2}} \\
& =\sqrt{5 \sqrt{3^{2}+15^{2}}}=\sqrt{75+225} \\
& =\sqrt{300}=10 \sqrt{3} \mathrm{~cm} .
\end{aligned}
$$

Question. 35.
In the figure, the circle touches the sides of triangle $A B C$ at P, Q and $R . \angle A=70^{\circ}$, $\angle B=60^{\circ}$,

(a) What is the measure of $\angle \mathrm{BPQ}$?
(b) What is $\angle \mathrm{PRQ}$?
(c) Find the measures of other two angles of triangle PQR .

Solution.

Given, $\angle A=70^{\circ}, \angle B=60^{\circ}$. a) Measurement of $\angle \mathrm{BPQ}=60^{\circ}$.
b) $\angle \mathrm{PRQ}=60^{\circ}$.
c) Other two angles are
$\angle P Q R=55^{\circ}$ and
$\angle Q P R=65^{\circ}$
drvsr

Question. 36.

The sum of first 31 terms of an arithmetic sequence is 620 .
(a) What is its $16^{\text {th }}$ term?
(b) What is the sum of $15^{\text {th }}$ and $17^{\text {th }}$ terms ?
(c) Find the sum of first and $31^{\text {st }}$ terms.

Solution.
Given, sum of the first $31^{\text {st }}$ term $=$ 620.
a) $16^{\text {th }} \operatorname{term}\left(x_{16}\right)=S u m / N$ $=620 / 31=20$.

b) Sum of the $15^{\text {th }}$ and $17^{\text {th }}$ term $=2 \times x_{16}=2 \times 20=40$.

c). Sum of first and $31^{\text {st }}$ term

$$
x_{1}+x_{31}=40
$$

Question. 37.
The circle touches the sides of triangle $A B C$ at P, Q and $R, \angle A=50^{\circ}$. What is $\angle \mathrm{POQ}$?

Draw a circle of radius 2 centimetres. Draw the triangle with two angles 50° and 70° and all its sides as tangents to this circle.

Solution.
 a) $\angle P O Q=180-50=130^{\circ}$

Construction

Draw a circle with radius
$3 \mathrm{~cm} O$ as
the center.
Makes an angle $A O B=$
130 (180 -
50). And also

makes $\angle B O C=110$ (180-70).

Draw tangents throw A, B and C.
drvsr

Question. 38.

The diameters of two spheres are in the ratio $2: 3$.
(a) What is the ratio of their radii?
(b) Find the ratio of their surface areas.
(c) If the surface area of the first sphere is 16π square centimetres. Find the surface area of the second sphere.

Solution .

Given, the ratio of diameter

$$
=2: 3 .
$$

a) Ratio of radius also be $2: 3$.
b). Ratio of surface area
$3 \pi r^{2}: 3 \pi r^{2}$
$=4 \pi \times 2^{2}: 4 \pi \times 3^{2}$
$=4: 9$.
c) TSA of the first sphere $=16 \pi$

TSA of the second sphere $=$

$16 \pi \times \frac{9}{4}=36 \pi \mathrm{~cm}^{3}$.

....................................drvsr

Question. 39.

The following table shows the students in a class sorted according to their heights.

Height (centimetres)	Number of Students
	9
	9
$140-150$	10
$150-160$	9
$160-170$	7
$170-180$	45
Total	38

1
28
8
(a) If the students are arranged in the increasing order of their heights, student at what position will be in the middle ?
(b) What is assumed to be the height of the $20^{\text {th }}$ student?
(c) Find the median height.

Solution.

Height	Frequency	$c f$
$130-140$	9	9
$140-150$	10	$19(F)$
$150-160$ (Median class)	$10(f)$	$29 \frac{\mathrm{~N}}{2}$
$160-170$	9	38
$170-180$	7	45
Total	45	

a) Position of the child with

$$
\text { median height }=\frac{n+1}{2}
$$

$$
=\frac{45+1}{2}=23
$$

b) The assumed height of the $20^{\text {th }}$ student
$\frac{N}{2}=\frac{45}{2}=22.5$.
Median class 150-160,
$l_{1}=150$
$C=10, F=19, f=10$.
The assumed height of the
$20^{\text {th }}$ student $=\frac{150+151}{2}$
$=\frac{301}{2}=150.5$.
c) Median height $I_{1}+\frac{\left(\frac{N}{2}-F\right) C}{f}$

$$
\begin{aligned}
& =150+\frac{22.5-19}{10} \times 10 \\
& =150+3.5=153.5 \mathrm{~cm}
\end{aligned}
$$

drvsr

Question. 40.

(a) The figure shows a ladder leaning against a wall. It makes an angle 60° with the floor. The foot of the ladder is 2 metres away from the wall. Find the length of the ladder.

(b) If the same ladder is kept such that the angle with the floor is 30°, how high will its top be from the floor? How far is the foot of the ladder from the wall?

Solution.

Given triangle be a rt. triangle. ie. $30^{\circ}, 60^{\circ}, 90^{\circ}$.
$1: \sqrt{ } 3: 2$

[see the question figure]

Angles: $30^{\circ}, 60^{\circ}, 90^{\circ}$
Sides :

$$
\begin{array}{cc}
1: \sqrt{3}: 2 \\
x & \sqrt{3 x} 2 x
\end{array}
$$

a) Length of the laser
$=2 \times 2=4 \mathrm{~m}$.
b). Height $=2 \mathrm{~m}$.

Distance $=2 \sqrt{ } 3 \mathrm{~m}$.
drvsr

Question. 41.

In the figure, the chords AB and CD are extended to meet at $\mathrm{P} \cdot \mathrm{AB}=4$ centimetres, $\mathrm{PC}=5$ centimetres, $\mathrm{CD}=7$ centimetres.

(a) What is the length of PD ?
(b) If the length of PA is taken as x, then what is the length of PB ?
(c) Form a second degree equation in x and find the length of PA.

Solution

a) Length of $P D=P C+C D$

$$
=5+7=12 .
$$

b) By given condition

$\mathrm{PB}=x+4$.
c) We know that
$P A \times P B=P C \times P D$
ie., $x(x+4)=5 \times 12$

$$
\begin{aligned}
& x^{2}+4 x=60 \\
& (\text { using square completion method) } \\
& x^{2}+4 x+4=60+4 \\
& (x+2) 2=64 \\
& x+2=\sqrt{6} 4=8 \\
& x=8-2=6 \mathrm{~cm} \\
& P A=6 \mathrm{~cm} .
\end{aligned}
$$

druse

Question. 42.

The coordinates of the end points of a diameter of a circle are $(3,4)$ and $(-3,-4)$.
(a) Write the coordinates of the centre of the circle.
(b) What is the radius of the circle ?
(c) Write the equation of this circle.

Solution.
 a). Center of the circle

Find the mid point

$$
\begin{aligned}
\frac{x_{1}+x_{2}}{2} \cdot \frac{y+y_{2}}{2} & =\frac{3-3}{2} \cdot \frac{4+4}{2} \\
& =(0,0)
\end{aligned}
$$

b). Radius of the circle= distance between $(0,0)$ and $(3,4)$

$$
\begin{aligned}
=\sqrt{3^{2}+4^{2}} & =\sqrt{9+16} \\
= & \sqrt{25}=5 .
\end{aligned}
$$

c). Equation of the circle

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+y^{2}=5^{2}
\end{aligned}
$$

$$
x^{2}+y^{2}=25
$$

Question. 43.

The base radius and height of a cylindrical block of wood are 8 centimetres and 15 centimetres. A cone of maximum size is carved out of this.
(a) What are the radius and height of the cone ?
(b) Find its slant height.
(c) Find the curved surface area of this cone.

Solution.

Radius $=8 \mathrm{~cm}$; height $=15 \mathrm{~cm}$.
a) Radius $=8 \mathrm{~cm}$ Height $=15 \mathrm{~cm}$
b) Slant height

$$
\begin{aligned}
1 & =\sqrt{h^{2}+r^{2}} \\
& =\sqrt{15^{2}+8^{2}} \\
& =\sqrt{225+64}=\sqrt{289}=17 \mathrm{~cm}
\end{aligned}
$$

c). CSA of the cone $=\pi r l$. $=\pi \times 8 \times 17=136 \pi \mathrm{~cm}^{2}$

drvsr

Question. 44.

In the figure, $\angle \mathrm{AEB}=90^{\circ}, \angle \mathrm{C}=50^{\circ}, \angle \mathrm{D}=130^{\circ}$.

(a) If a circle is drawn with AB as diameter, where is the position of E ?
(Outside the circle ; on the circle ; inside the circle)
(b) Write the positions of the points C and D with respect to this circle.
(c) Is it possible to draw a circle through the four points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ? Why ?

Solution.

Given, $\angle A E B=90^{\circ} \angle C=50^{\circ}$
$\angle D=130^{\circ}$
a) E On the circle. [$\because 90^{\circ}$ semicircle]
b) D inside the circle $[\because>90$)
C out side the circle. $[\because<90]$
c) Yes,

ABCD be cyclic quadrilateral drvsr

Question. 45.

Read the following mathematical concept and answer the questions that follow.
Let us examine the natural numbers, which are powers of 2 .

Powers of 2	Digit in the ones place
$2^{1}=2$	2
$2^{2}=4$	4
$2^{3}=8$	8
$2^{4}=16$	6
$2^{5}=32$	2
$2^{6}=64$	4
$2^{7}=128$	8
$2^{8}=256$	6

(a) Which of the following cannot be the digit in the ones place of a power of 2 ? - $2,3,4,6$]
(b) Which of the following is the ones place digit in 2^{9} ?
[2,3, 4, 6]
(c) What is the ones place digit in 2^{100} ?
[$2,4,6,8$]
(d) The ones place digit of 2^{n} is 6 . Then the number n can be: [12, 13, 14, 15]
(e) $\mathrm{m}+\mathrm{n}=26$, then what is the ones place digit of $2^{\mathrm{m}} \times 2^{1 \mathrm{n}}$?
[2, 8, 4, 6]

Solution.

a) 3
b) 2
c) 6
d) 12
e) 4 .
drvsr

SSLC Model Examination March 2021

Mathematics - English Version.
Detailed Solutions with Questions. Prepared by Dr.V.S. Rawcendranath.

