MODEL EXAMINATION, MARCH 2021

ZOOLOGY ANSWER KEY

QN	Scorir	ng key	Score
~	Scoring key Questions 1 to 7 carries 1 score each		
1	Sertoli cells/Nursing cells/Supporting		1
2	Medical Termination of Pregnancy /N		1
3	Normal Male		0.5
	Affected Female		0.5
4	A-DNA Replication		0.5
	B-Translation		0.5
5	a)CH ₄ ,NH ₂ ,H ₂ O,H ₂	- 0 \ '	1
6	b)Propionibacterium sharmanii		1
7	a)IARI-Indian Agriculture Research institute		0.5
	b)KVIC-Khadi and Village Industries C		0.5
		6 carries 2 score each	
8	a-Mammary tubule		1
	b-Lactiferous duct		1
9	ZZ –ZW mechanism of sex XX-XO Mechanism of sex		
	determination	determination	
	Here both male and female have same number of chromosomes	• Here males are one chromosome less than (Sex chromosome)that of females	2
	Males are homozygous	Males are heterozygous	
	Females are heterozygous	Females are Homozygous	
	• Type of egg receiving sperm will	• Type of sperm entering into egg will	
	determine sex of baby	determine sex of baby	
	Female will determine sex of baby	Male will determine sex of baby	
10	• Eg.Birds	Eg.Insects	1
10	a)Translation/Formation of polypepti		1
11	b) They are required for efficient translation process.		1 0.5×4=2
11	Any four warning signs		
12	a)Lactobacillus/Lactic acid bacteria/LAB		1
	b) Small amount of curd act as starter or inoculums ,contains millions of LAB which at suitable temperature multiply and convert milk into curd		0.5 0.5
	LAB which at suitable temperature m	uniply and convert milk into curd	0.5

navas	9895@gmail.com		
13	a) A-Acrosome		1
	b) The acrosome is filled with enzyme	s that help fertilisation of the ovum.	1
14	a)Habitat loss and fragmentation		0.5
	b)Alien Species invasion		0.5
	c)Over exploitation		0.5
	d)Co extinction		0.5
15	Yes		1
	Which contains several antibodies abs resistance for the new-born babies.	solutely essential to develop	1
16	a) Transforming principle/ Griffith effect		1
	<u>b)</u> The mice died due to pneumonia		
	from died mice. He concluded that		1
	-	S strain bacteria. Some 'transforming	
		t-killed S strain, had enabled the R	
	strain to synthesise a smooth polysac	charide coat and become virulent.	
	Ie. R strain were converted into S stra	in	
17	Two possibilities		
	Blood group may be A or O		
	Fathers Moot In In i	her	2
	T ^A T ^A ì	ì	
	(TA)		
	gamet I	9	
	- A		
	Tri		
	A-blood gr	mp.	
		Need	
	Forther Mo	ther	
	TAI	11	
		i	
	gamete (C		
	° /		
	A: ii		
	Jul Oplood		
	A blood grow		
	. Thomas Deced		
18	8 a)Tubectomy/Sterilisation method in female		1
10	b) It is a terminal method to prevent a		1
19	Narrow Utilitarian	Broadly Utilitarian	-
-	The narrowly utilitarian arguments for	The broadly utilitarian argument says	
	conserving biodiversity are obvious;	that biodiversity plays a major role in	1
	humans derive countless direct	many ecosystem services that nature	-
	economic benefits from nature food	provides	

<u>navas</u>	9895@gmail.com		
	products (tannins, lubricants, dyes, resins, perfumes) and products of medicinal importance. Eg. More than 25 % of the drugs currently sold in the market worldwide are derived from plants 	 Amazon forest (Lungs of Planet) estimated to produce, through otosynthesis, 20 per cent of the al oxygen in the earth's nosphere. Pollination (without which plants nnot giveus fruits or seeds) is other service, ecosystems provide ough pollinators layer – bees, mblebees, birds and bats. There are other intangible benefits that we derive from nature–the sthetic pleasures of walking through ck woods, watching spring flowers full bloom or waking up to a bulbul's ng in the morning etc give pleasure 	1
20	a-Sickle cell anaemia		1
	(Val) (His) (Leu) (Thr) (Pro) (glu) (glu)		
	b -1 2 3 4 5 6 7		1
21	a-User friendly	0	0.5
	b-Easily available		0.5
	c-Effective		0.5
	d-Reversible		0.5
22	a-Blastocyst		1
		-	1
23			
			0.5×4=2
	Tricnomoniasis		
24	Eg. More than 25 % of the drugs currently sold in the market worldwide are derived from plants atmosphere. 02-Pollination (without which plants cannot giveus fruits or seeds) is another service, ecosystems provide through pollinators layer – bees, bumblebees, birds and bats. 03-There are other intangible benefits – that we derive from nature-the aesthetic pleasures of walking through thick woods, watching spring flowers in full bloom or waking up to a bulbul's song in the morning etc give pleasure (Any one example) 20 a-Sickle cell anaemia water friendly b-1 a. 3 21 a-User friendly b-1 a. 3 22 a-Blastocyst b-Inner cell mass-It became embryo /Germ layer 23 Completely Curable Chlamydiasis Trichomoniasis Hepatitis-B, HIV infections 24 a- Acquired Immuno Deficiency Syndrome b-HIV/ Human immunodeficiency virus c-ELISA/ enzyme-linked immunosorbent assay d)Any two preventive methods 25 a-Opioids b-Papaver somniferum c-Hashish d-Cannabis sativa	0.5	
			0.5
	-	assay	0.5
25			0.5 0.5
23	-		0.5
			0.5
			0.5
26			0.5
			0.5
		a larger population to form a	
		arries 3 score each	

<u>navas</u>	9895@gmail.com		
	b- A-Promoter		1
	B-Terminator		
	C-		
	Template strand	Coding strand	1
	The strand of DNA with polarity	the other strand of DNA with	
	3'—5' act as a template	polarity $5'-3'$ is called coding	
		strand	
	The mRNA is copied from a	Coding strand donot code for	
	segment of Template strand	anything.	
	segment of remplate strand	anything.	
20			
28	the laboratory 03- The zygote or early embryos th could then be transferred into the falle transfer) and embryos with more tha	_	1
	called Embryo transfer) IVF and ET (ZIFT/IUT) b)	Or	1
	AI	IUI	1
	 Artificial Insemination The semen collected either from the husband or a healthy donor is artificially introduced either into the vagina 	the husband or a healthy donor	0.5+0.5
	C) Bosson for Infortility (Any two)		
	 C) Reason for Infertility (Any two) Physical Congenital, Diseases, Drugs, Immunological Psychological 		
29	a)Perimetrium, Myometrium, Endome	trium	1.5
	b)Myometrium		0.5
	c)Endometrium		1
30	a)Klinfelter's syndrome		1
	b)44A+XXY		1
	Symptom (2-Characters)		
	01-Such an individual has overall masculin development (development of breast, i.e., (· · · · · · · · · · · · · · · · · · ·	0.5+0.5
			0.510.5

	02-Such individuals are sterile		
81	a)Homologous organs/Fore limbs of mammals b)		
	Homologous Organs	Analogous Organs	
	1-Homologus organs are organs having	1-Organs having same function but	
	same structure and origin but	8	
	different functions. This phenomenon	phenomenon is called Analogy.	
	is called homology .	2-Such organs are developed due to	
	2-such organs are developed due to	Convergent evolution	
	divergent evolution		
	c) In homologous organs same structure developed along different directions due		
	to adaptations to different needs. This is	divergent evolution	
	In analogous organs different structures of	evolving for the same function and hence	
	having similarity.Such organs are develope	U	
		5	