WANDOOR GANITHAM - S S L C MODEL QUESTION PAPER 2021

PREE2
DETAILED ANSWER KEY - QUESTION PAPER 2

Qn no.	Key
For questions from 1 to 5 one score each .	
1	The sum of first five terms of an arithmetic sequence is $\mathbf{3 0}$ and sum of first seven terms is 56 . What is the sum of its sixth and seventh terms ? $(43,16,26,50)$
	Answer . $x_{6}+x_{7}=S_{7}-S_{5}=56-30=26$
2	Which among the following is $\tan x^{0} \quad$? $\left(\frac{b}{c}, \frac{a}{c}, \frac{b}{a}, \frac{a}{b}\right)$
	Answer . $\tan x^{0}=\frac{\text { opposite side of } x^{0}}{\text { adjacent side of } x^{0}}=\frac{b}{a}$
3	$(0,0)$ and $(6,8)$ are the ends of the diameter of a circle. What is its radius ? $(10,6,8,5)$
	Answer. $\begin{aligned} & \text { Diameter }=\sqrt{(6-0)^{2}+(8-0)^{2}}=\sqrt{6^{2}+8^{2}}=\sqrt{36+64}=\sqrt{100}=10 \\ & \text { Radius }=\frac{10}{2}=5 \end{aligned}$
4	In the figure $A B C D$ is a parallelogram . What are the coordinates of \mathbf{D} ? $((5,7),(3,-1),(13,9),(7,5))$

	Answer . $(5+10-8,2+7-4)=(7,5)$
5	In a class there are $\mathbf{3 0}$ boys and $\mathbf{2 0}$ girls. One student is to be selected as leader . What is the probability that the class leader will be a boy ? $\left(\frac{30}{50}, \frac{20}{50}, \frac{30}{20}, \frac{20}{30}\right)$
	Answer . $\text { Probability that the class leader will be a boy }=\frac{\text { Numer of favourable results }}{\text { Total number of results }}=\frac{30}{50}$
	For questions from 6 to 10 carries 2 scores each .
6	Seventh term of an arithmetic sequence is 10 and its tenth term is 7 . a) What is its common difference ? b) What is its $17^{\text {th }}$ term ?
	Answer . a) common difference $=\frac{\text { term difference }}{\text { positiondifference }}=\frac{7-10}{10-7}=\frac{-3}{3}=-1$ b) $\quad x_{17}=x_{10}+7 \times d=7+7 \times-1=7-7=0$
7	$p(x)$ is a second degree polynomial , $p(3)=0, p(-5)=0$ and the coefficient of x^{2} is 1 . a) Write a factor of $p(x)$? b) Write $p(x)$ as the product of two first degree polynomials?
	Answer . a) $x-3$ or $x+5$ b) $(x-3)(x+5)$

8 In triangle $A B C$, $A B=10 \mathrm{~cm}, \angle A C B=150^{\circ}$.
P is a point on the alternate arc of arc $A C B$.
a) What is the measure of $\angle A P B$?
b)What is the circumdiameter of triangle $A B C$?

Answer.

a) $\angle A P B=180-\angle A C B=180-150=30^{\circ} \quad$ (opposite angles of a cyclic quadrilateral are supplementary)
b) Circumdiameter of triangle $A B C=\frac{A B}{\sin P}=10 \div \frac{1}{2}=10 \times 2=20 \mathrm{~cm}$

9 A solid metal cylinder of base radius 9 centimetres and height 20 centimetres is melted and recast into cones of same base radius and heght as that of the cylinder .
a) What is the volume of the cylinder ?
b) How many cones can be made ?

Answer .
a) Volume of the cylinder $=\pi \times r^{2} \times h=\pi \times 9^{2} \times 20=1620 \pi$ sq. cm
b) 3

10 Consider a line passing through the points (4,2) and (9,5).
a) What is the slope of the line ?
b) If (m, n) is a point on this line, prove that ($m+10, n+6$) is also a point on this line?

Answer.
a) Slope of the line $=\frac{5-2}{9-4}=\frac{3}{5}$
b) $\frac{n+6-n}{m+10-m}=\frac{6}{10}=\frac{3}{5}$

Since the slopes are same , $(m+10, n+6)$ is a point on this line

For questions from 11 to 20 carries 3 scores each.	
11	Draw a triangle of circumradius 4 cm and two of the angles $45{ }^{\circ}$ and $65{ }^{\circ}$
12	Consider an arithmetic sequence $5,9,13, \ldots .$. a) What is its common difference ? b)What is its algebraic form ? c) Find the position of 121 in this sequence ?
	Answer. a) Common difference $=9-5=4$ b) Algebraic form $=d n+f-d=4 n+5-4=4 n+1$ c) $4 n+1=121$ $4 n=121-1=120$
13	If $p(x)=x^{2}-25$ a) Find $p(5)$? b) Write $\quad p(x)$ as the product of first degree polynomials ? c) Write $121 x^{2}-25$ as the product of first degree polynomials ?

	Answer .
	a) $p(5)=5^{2}-25=25-25=0$
	b) $(x-5)(x+5)$
	c) $121 x^{2}-25=(11 x-5)(11 x+5)$
14	One is asked to say a two digit number . a) How many two digits numbers are there? b) What is the probability that both the digits being same? c) What is the probability that the product of the digits being zero ?
	Answer . a) 90 b) Favourable results $=11,22,33,44,55,66,77,88,99$ $\text { Probability that both the digits being same }=\frac{\text { Numer of favourable results }}{\text { Totalnumber of results }}=\frac{9}{90}$ c) Favourable results $=10,20,30,40,50,60,70,80,90$ Probability that the product of the digits being zero = $\frac{\text { Numer of favourable results }}{\text { Total number of results }}=\frac{9}{90}$
15	The below are the the rain fall in millimetres in a place last week . $55,62,70,61,63,56,53$ a) What is mean rainfall during that week ? b) What is median rainfall during that week ?
	Answer . a) Mean $=\frac{55+62+70+61+63+56+53}{7}=60 \mathrm{~mm}$ b) $53,55,56,61,62,63,70$ Median $=61 \mathrm{~mm}$

16 When sun is an elevation of 60°, the length of the shadow of a tree is 12 meters.
a) Draw a rough figure based on the given details ?
b) What is the height of the tree ?
c) What will be the length of the shadow if sun is an elevation of 30° ?

Answer.

a)

b) Height of the tree $=12 \sqrt{3} \mathrm{~m}$
c) Length of the shadow $=12 \sqrt{3} \times \sqrt{3}=36 \mathrm{~m}$

17 Two cones have same volume . Their heights are in the ratio $9: 16$
a) If the height of the first cone is taken as 9 h , what is the height of the second cone?
b) What is the ratio of their radii ?

Answer.

a) Height of the second cone $=16 \mathrm{~h}$
b) $\frac{1}{3} \times \pi \times r_{1}^{2} \times 9 h=\frac{1}{3} \times \pi \times r_{2}^{2} \times 16 h$

$$
\frac{r_{1}^{2}}{r_{2}^{2}}=\frac{16}{9} \quad==\Rightarrow \quad \frac{r_{1}}{r_{2}}=\sqrt{\frac{16}{9}}=\frac{4}{3}
$$

Ratio of the radii $=4: 3$
$18 \mathbf{A}(0,0), \mathbf{B}(2,0)$ and $\mathbf{C}(1, \sqrt{3})$ are the vertices of a triangle.
a) What is the length of AB ?
b) What is the length of BC ?
c) Prove that ABC is an equilateral triangle ?

Answer.
a) $A B=2$

	b) $\quad B C=\sqrt{(1-2)^{2}+(\sqrt{3}-0)^{2}}=\sqrt{(-1)^{2}+3}=\sqrt{1+3}=\sqrt{4}=2$ c) $\quad A C=\sqrt{(1-0)^{2}+(\sqrt{3}-0)^{2}}=\sqrt{1+3}=\sqrt{4}=2$ $A B=B C=A C \quad==>\quad \mathbf{A B C}$ is an equilateral triangle .
19	In the figure O is the centre of the circle. $P A$ is a tangent and the radius of the circle is $\mathbf{3}$ centimetres .Draw this figure in the given measures .
20	In the figure \mathbf{O} is the centre of the circle $.<\mathrm{OAC}=20^{\circ}$ $\angle \mathrm{OBC}=30^{\circ}$ a) What is the measure of < ACO ? b) What is the measure of < AOB ?
	Answer . A) $\angle A C O=20^{\circ} \quad(\mathbf{O A}=\mathbf{O C}$, radii of a circle are equal) b) $\angle B C O=30^{\circ} \quad(\mathbf{O B}=\mathbf{O C})$ $\angle A C B=20+30=50^{\circ} \quad==>\quad \angle A O B=2 \times 50^{\circ}=100^{\circ}$ (The central angle of an arc is double the angle made by it on the alternate arc)

For questions from 21 to 30 carries 4 scores each .	
21	Draw a rectangle of width 7 cm and height 2 cm . Draw a square of the same area .
22	The angles of a hexagon are in arithmetic sequence.The smallest angle is $80^{\mathbf{0}}$. a) What is the sum of the angles of a hexagon ? b) What is the sum of the largest and smallest angles ? c)What is the common difference ? Answer. a) Sum of the angles of a hexagon $=4 \times 180=720^{\circ}$ b) $x_{1}+x_{6}=\frac{720}{3}=240^{\circ}$ c) Largest angle $=240-80=160^{\circ}$ $\text { common difference }=\frac{\text { termdifference }}{\text { positiondifference }}=\frac{160-80}{6-1}=\frac{80}{5}=16^{0}$
23	A bag contains 15 white and 25 green beads. Take one bead from this a) What is the probability of getting a green bead ? b) What is the probability of getting a white bead? c) How many more green beads are to be put in the box to make the probability of getting a white bead is $\frac{3}{10}$?

	d) If some balls are taken out from the bag , then the probability of getting a white bead becomes $\frac{1}{q}$. What is the probability of getting a green bead ?
	Answer . a) Probability of getting a green bead $=\quad \frac{\text { Numer of favourable results }}{\text { Totalnumber of results }}=\frac{25}{400}$ b) Probability of getting a white bead $=\quad \frac{\text { Numer of favourable results }}{\text { Total number of results }}=\frac{15}{40}$ c) $50-40=10$ $\left(\frac{3}{10}=\frac{15}{50}\right)$ d) $1-\frac{1}{q}$
24	Perpendiculars are drawn from a point P to the axes, cut the x axis at (3,0) and the y axis at $(0,2)$. a) What are the coordinates of P ? b) Write down the coordinates of two more points on a line passing through the point P parallel to the y-axis ? c)Write down the coordinates of another point on a line passing through the point P perpendicular to the y-axis ?
	Answer . a) $(3,2)$ b) $(3,3),(3,4)$ or any two points with \mathbf{x}-coordinate $\mathbf{3}$ c) or any point with \mathbf{y}-coordinate 2 . (The line parallel to y-axis is parallel to the x-axis)
25	If $p(x)=x^{2}-7 x+12$ a) Find $p(2) \quad$?

	b) Write a factor of $p(x)-p(2) \quad$? c) Write $\quad p(x)-p(2)$ as the product of two first degree polynomials ?
	Answer . a) $p(2)=2^{2}-7 x \times 2+12=2$ b) $(x-2)$ c) $\quad p(x)-2=\left(x^{2}-7 x+12\right)-2=x^{2}-7 x+10$ $x^{2}-7 x+10=(x-2)(x-5)$
26	In the figure O is the centre of the circle. Chords AB and $C D$ are intersect at $P . P C=4 \mathrm{~cm}, P D=3 \mathrm{~cm}, P O=2 \mathrm{~cm}$ a) If the radius of the circle is taken as r, what is the length of PB ? b) $\mathbf{P A} \times \mathbf{P B}=$ \qquad c) What is the radius of the circle ?
	Answer. a) $P B=r+2$ b) $P A \times P B=P C \times P D \quad$ or $\quad 4 \times 3=12$ c) $P A \times P B=12==>(r+2)(r-2)=12==>r^{2}-2^{2}=12$ $r^{2}-4=12 \quad=\Rightarrow \quad r^{2}=12+4=16 \quad=\Rightarrow \quad r=\sqrt{16}=4 \mathrm{~cm}$
27	Raju and Geetha stand on either side of a tower . Raju sees the top of the building at an elevation 30° and Geetha sees it an elevation of 45°. After moving 80 metres towards the tower, Raju sees its top at an elevation 60° a) Draw a rough figure based on the given details? b) What is the height of the tower ? c) What is the distance between the tower and Geetha ?

	Answer . a) b) In the triangle ABE , $<\mathrm{ABE}=30^{\circ},<\mathrm{AEC}=60^{\circ}==><\mathrm{BAE}=30^{\circ}$ (The outer angle at a vertex is the sum of the angles at other vertices) ABE is an isosceles triangle $\cdot\left(<\mathrm{ABE}=30^{\circ},<\mathrm{BAE}=30^{\circ}\right)$ $==>\quad \mathrm{BE}=\mathrm{AE}=\mathbf{8 0} \mathrm{m}$ In the triangle AEC , $A C=40 \sqrt{3}$ $(C E: A C: A E=1: \sqrt{3}: 2)$ $\text { Height of the tower }=40 \sqrt{3} \mathrm{~m}$ c) In the triangle ACD , $\begin{equation*} A C=40 \sqrt{3}=\Rightarrow \quad C D=40 \sqrt{3} \tag{2} \end{equation*}$ Distance between the tower and Geetha $=40 \sqrt{3} \mathrm{~m}$
28	Workers in a factory are sorted according to their daily wage in the table below .

	Answer . a) Radius of the sector $=$ Slant height of the cone $=18 \mathrm{~cm}$ b) Base perimeter of the cone $=$ Arc length of the sector $=12 \pi \mathrm{~cm}$ c) Base radius of the cone $=\frac{12 \pi}{2 \pi}=6 \mathrm{~cm}$ d) $\frac{x}{360}=\frac{6}{18} \quad \Rightarrow \quad x=\frac{6 \times 360}{18}=120^{\circ}$ Central angle of the sector $=120^{\circ}$
3	a) Which number is to be added to $x^{2}-20 x$ to get a perfect square ? b) Find the natural number value of x satisfying the equation $x^{2}-20 x=576$? Answer . a) 100 $x^{2}-20 x+10^{2}=(x-10)^{2}$ b) $x^{2}-20 x \times 2+100=576+100==>\quad(x-10)^{2}=676$ $\begin{aligned} & x-10=\sqrt{676} \quad==>\quad x-10=26 \\ & x=26+10=36 \end{aligned}$
	For questions from 31 to 45 carries 5 scores each.
31	Draw a circle of radius 2.5 cm . Draw a triangle of angles $50^{\circ}, \mathbf{6 0}^{\circ}, \mathbf{7 0}^{\circ}$ with all its sides touching this circle .

32 Find the following sums .
a) $1+2+3+4+5+\ldots \ldots \ldots+60$
b) $1+2+3+4+5+\ldots \ldots+30$
c) $31+32+33+34+35+\ldots \ldots+60$
d) $62+64+66+68+70+\ldots \ldots+120$
e) $93+96+99+102+105+\ldots \ldots+180$

Answer.
a) $1+2+3+4+5+\ldots \ldots \ldots+60=\frac{60 \times 61}{2}=1830$
b) $\mathbf{1}+\mathbf{2}+\mathbf{3}+4+5+\ldots \ldots \ldots+30=\frac{30 \times 31}{2}=465$
c) $31+32+33+34+35+\ldots \ldots \ldots+60=1830-465=1365$
d) $\mathbf{6 2}+\mathbf{6 4}+\mathbf{6 6}+\mathbf{6 8}+\mathbf{7 0 + \ldots \ldots \ldots + 1 2 0 = 2 \times 1 3 6 5 = 2 7 3 0}$
e) $\mathbf{9 3}+\mathbf{9 6}+\mathbf{9 9}+\mathbf{1 0 2}+\mathbf{1 0 5}+\ldots \ldots \ldots+\mathbf{1 8 0}=1365+2730=4095$

33 a) Draw the axes and mark the points $A(0,2), B(-1,3), C(-1,-2), D(4,-2)$
b) Join the points A, B, C, D in order and give the most suitable name for the polygon obtained ?

Answer .

b) Right triangle

34 In the figure PQ is a tangent $\cdot \mathrm{AB}=\mathrm{PB}, \angle \mathrm{DAQ}=60^{\circ}, \angle \mathrm{APB}=50^{\circ}$
a) What is the measure of $<\mathrm{ABD}$?
b)What is the measure of < BAP ?
c) What is the measure of < ADB ?
d) What is the measure of $<$ BCD ?

Answer.
a) $\angle A B D=60^{\circ}$ (In a circle, the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side)
b) $\angle B A P=50^{\circ} \quad(\mathbf{A B}=\mathbf{P B})$
c) $\angle A D B=50^{\circ}$
d) $\angle B A D=70^{\circ} \quad$ (Sum of the angles of a triangle is $\mathbf{1 8 0}^{\boldsymbol{\circ}}$)
$\angle B C D=110^{\circ} \quad(\mathbf{A B C D}$ is cyclic .Opposite angles of a cyclic quadrilateral are supplementary)
$P(1,1), Q(9,7)$ and $R(2,8)$ are the vertices of a triangle .
a) What is the length of PQ ?
b) prove that PQR is an isosceles triangle ?
c) What are the coordinates of the midpoint of the side PQ ?
d) What is the perpendicular distance from the vertex R to the side $P Q$?
e) What is the area of the triangle PQR ?

Answer.

a) $\quad P Q=\sqrt{(9-1)^{2}+(7-1)^{2}}=10$
b) $Q R=\sqrt{(2-9)^{2}+(8-7)^{2}}=\sqrt{50}$

$$
P R=\sqrt{(2-1)^{2}+(8-1)^{2}}=\sqrt{50}
$$

c) Coordinates of the midpoints of $\mathbf{P Q}=\left(\frac{1+9}{2}, \frac{1+7}{2}\right)=(5,4)$
d)Perpendicular distance from \mathbf{R} to the side $\mathbf{P Q}=\sqrt{(2-5)^{2}+(8-4)^{2}}=5 \mathrm{~cm}$
e) Area of the triange $\mathbf{P Q R}=\frac{1}{2} \times 10 \times 5=25 \mathrm{sq} . \mathrm{cm}$

36 The sum of first 9 terms of an arithmetic sequence is $\mathbf{1 7 1}$ and the sum of first $\mathbf{1 0 t e r m s}$ is 210 .
a) What is its fifth term ?
b) What is its tenth term ?
c) What is its common difference ?
d) What is its algebraic form ?
e) What is the remainder when each term of this sequence is divided by its common difference?

Answer .

a) Fifth etrm $=\frac{171}{9}=19$
b) Tenth term $=S_{10}-S_{9}=210-171=39$
c) commondifference $=\frac{\text { termdifference }}{\text { positiondifference }}=\frac{39-19}{10-5}=\frac{20}{5}=4$
d) $x_{1}=x_{5}-4 d=19-4 \times 4=19-16=3$
$d n+f-d=4 n+3-4=4 n-1$
e) 3

37 In the figure $O A$ is the diameter of the semicirle . BCDE is a square .
a) What is the length of BC ?
b) What are the coordinates of E ?
c)What are the coordinates of D ?
d) What are the coordinates of A ?

Answer.
a) $B C=6$
b) Coordinates of $\mathbf{E}=(9+6,0)=(15,0)$
c) Coordinates of $\mathbf{D}=(15,6)$
d) $O B \times B A=B C^{2}=\Rightarrow \quad 9 \times B A=6^{2}=\Rightarrow \quad B A=\frac{6^{2}}{9}=\frac{36}{9}=4$

Coordinates of $\mathbf{A}=(9+4,0)=(13,0)$
388 identical solid metal cones of base radius 6 centimetres and height 8 centimetres are melted and recast in to a larger cone of base radius 12 centimetres.
a) What is the volume of a small cone ?
b) What is the volume of the larger cone?
c) What is the height of the larger cone ?
d) What is the surface area of the larger cone ?

Answer .

a) Volume of a small cone $=\frac{1}{3} \times \pi \times 6^{2} \times 8=96 \pi \mathrm{cu} . \mathrm{cm}$
b) Volume of the larger cone $=8 \times \frac{1}{3} \times \pi \times 6^{2} \times 8=768 \pi \mathrm{cu} . \mathrm{cm}$
c) Height of the larger cone $=\frac{768 \pi \times 3}{144 \pi}=16 \mathrm{~cm}$

	d) Slant height of the larger cone $=\sqrt{r^{2}+h^{2}}=\sqrt{12^{2}+16^{2}}=20 \mathrm{~cm}$ Surface area of the larger cone $=\pi \times 12^{2}+\pi \times 12 \times 20=384 \pi \mathrm{sq} . \mathrm{cm}$
39	In the figure two chords AB and CD are extended to meet the tangent through E at $P \cdot P A=18 \mathrm{~cm}, A B=10 \mathrm{~cm}, P D=6 \mathrm{~cm}$ a) What is the length of PB ? b) $\mathbf{P C} \times \mathbf{P D}=$ \qquad c) What is the length of CD ? d) What is the length of the tangent PE ? Answer. a) $P B=8 \mathrm{~cm}$ b) $P C \times P D=P A \times P B$ or $18 \times 8=144$ or $P E^{2}$ c) $P C \times P D=144==>\quad P C \times 6=144==>\quad P C=\frac{18 \times 8}{6}=24 \mathrm{~cm}$ $C D=P D-P C=24-6=18 \mathrm{~cm}$ d) $P C \times P D=P E^{2}==>\quad P E=\sqrt{144}=12 \mathrm{~cm}$
40	If $x^{2}-20 x+96=(x-a)(x-b)$ a) What is the value of $a+b$? b) What is the value of $a b$? c) Write $x^{2}-20 x+96$ as the product of two first degree polynomials ?
	Answer . a) $a+b=20$ b) $a b=96$ c) $a=12$ $\begin{aligned} & b=8 \\ & x^{2}-20 x+96=(x-12)(x-8) \end{aligned}$

41 In the figure $B P Q R$ is a square . $P Q=6 \mathrm{~cm}, \angle C=30^{\circ}$
a) What is the measure of $<A$?
b) What is the length of $C Q \quad$?
c) What is the area of the triangle $A Q R$?
d)What is the perimeter of the triangle $A B C$

Answer.
a) $\angle A=60^{\circ}$
b) $C Q=12 \mathrm{~cm}$
c) $\quad A R=\frac{6}{\sqrt{3}} \mathrm{~cm}$
d) $\quad Q R=6 \mathrm{~cm}$

Area of the triangle $\mathbf{A Q R}=\frac{1}{2} \times Q R \times A R=\frac{1}{2} \times 6 \times \frac{6}{\sqrt{3}}=\frac{18}{\sqrt{3}} \mathrm{sq} . \mathrm{cm}$
e) Perimeter of the triangle $\mathbf{A B C}=(6+6 \sqrt{3})+\left(6+\frac{6}{\sqrt{3}}\right)+\left(\frac{12}{\sqrt{3}}+12\right)=24+6 \sqrt{3}+\frac{18}{\sqrt{3}} \mathrm{~cm}$

42 In the figure, the circle touches the sides of the triangle $A B C$ at the points P, Q, R $A B=12 \mathrm{~cm}, B C=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$.
a) Which other line has the same length as that of AP ?
b) If the length $A P$ is taken as x, what is the length of $B Q$?
c) What is the value of x ?
d) What are the lengths of the line CR ?

Answer .
a) $A P=A Q \quad$ (The tangents to a circle from a point are of the same length)
b) $B P=B Q=12-x$
c) $C Q=C R=14-x$

	$\begin{aligned} & B C=B Q+C Q \quad==>\quad(12-x)+(14-x)=10 \quad==>\quad 26-2 x=10 \\ & 2 x=26-10=16 \quad \Rightarrow \quad x=\frac{26-10}{2}=8 \end{aligned}$ d) $C R=14-x=14-8=6 \mathrm{~cm}$
43	In the figure O is the centre of the circle . $\angle \mathrm{AOB}=100^{\circ}$ a) What is the measure of < ACB ? b) What is the measure of < PDQ ? c) What is the sum of the angles < CQD and <CPD ?
	Answer . a) $\angle A C B=50^{\circ}$ (The angle made by an arc on its alternate arc is half its central angle) b) $\angle A D B=50^{\circ}$ (All angles made by an arc on the alternate arc are equal) $\angle P D Q=180-50=130^{\circ}$ (linear pair) c) $\angle P C Q=180-\angle A C B=180-50=130^{\circ}$ $\angle C Q D+\angle C P D=360-(130+130)=100^{\circ} \quad$ (Sum of the angles of a quadrilateral)
44	The perimeter of a rectangle is $\mathbf{5 6}$ centimetres and its diagonal is $\mathbf{2 0}$ centimetres. a) What is the sum of the lengths of its shorter and longer sides? b) Write down a second degree equation b taking the shorter side as $14-\mathbf{x} \quad$? c) What are the lengths of the sides ? ?
	Answer . a) Sum of the lengths of its shorter and longer sides $=\frac{\text { Perimeter }}{2}=\frac{56}{2}=28$ b) Length of the shorter side $=14-x==>$ Length of the longer side $=14+x$

	$\begin{aligned} & \begin{array}{l} (14+x)^{2}+(14-x)^{2}=20^{2} \quad==>\quad 2 \times 14^{2}+2 \times x^{2}=400 \\ 2 \times 196+2 \times x^{2}=400 \end{array} \\ & 392+2 x^{2}=400 \\ & \text { c) } 392+2 x^{2}=400 \quad==>\quad 2 x^{2}=400-392=8 \quad=>\quad x^{2}=\frac{8}{2}=4 \quad==>\quad x=\sqrt{4}=2 \\ & \text { Length of the shorter side }=14-x=14-2=12 \mathrm{~cm} \\ & \text { Length of the longer side }=14+x=14+2=16 \mathrm{~cm} \end{aligned}$
45	In the figure $A B C D$ is a rectangle $. A B=9 \mathrm{~cm}$. $<\mathrm{ABD}=60^{\circ}, \quad<\mathrm{CDE}=45^{\circ}$ a) What is the measure of < ADB ? b) What is the length of the side BD ? c) What is the length of the side DE ? d) What is the measure of $<$ BDE ? e)What is the ratio of the sides of a triangle having angles $30^{0}, 45^{0}$ and 105^{0}
	Answer . a) $\angle A D B=30^{\circ}$ b) $B D=18 \mathrm{~cm}$ $(A B: A D: B D=1: \sqrt{3}: 2)$ c) $D E=9 \sqrt{2} \mathrm{~cm}$ $(C D: C E: D E=1: 1: \sqrt{2})$ d) $\angle B D E=60+45=105^{\circ}$ e) $D E: B D: B E=18: 9 \sqrt{2}: 9+9 \sqrt{3}$ $=2: \sqrt{2}: 1+\sqrt{3}$

