WANDOOR GANITHAM - S S L C MODEL QUESTION PAPER 2021

PREM1

DETAILED ANSWER KEY - QUESTION PAPER 1

Qn no.	Key		
	For questions from 1 to 5 one score each .		
1	What is the algebraic form of the arithmetic sequence 5, 8, 11,?		
	(2 n + 3 , 3 n + 2 , 4 n + 1 , 5 n)		
	Answer .		
	dn + f - d = 3n + 5 - 3 = 3n + 2		
2	In the figure $<$ ADC = 80 ^o .What is the measure of D		
	< CBE ?.		
	$(100^{\circ} 90^{\circ} 80^{\circ} 50^{\circ})$		
	Answer.		
	$\{ < CBA = 180 - 80 = 100^{\circ}$ (opposite angles of a cyclic quadrilateral are		
	supplementary) }		
	$< CBE = 180 - 100 = 80^{\circ}$ (linear pair)		
3	What number is to be added to $x^2 + 20x$ to get a perfect square ?		
	(400,100,144,64)		
	Answer .		
	100 { $x^2 + 20x + 10^2 = (x+10)^2$ }		
4	In triangle ABC, $\langle B = 90^\circ$, $\sin A = \frac{3}{5}$, then $\cos C = \dots$ A		
	$\begin{pmatrix} 4 & 3 & 4 & 3 \end{pmatrix}$		
	$\left(\overline{5}, \overline{4}, \overline{3}, \overline{5}\right)$		
	BC		

	<u>Answer</u> .
	$\sin \mathbf{A} = \frac{opposite \ side \ of \ \cos \mathbf{C} = \frac{adjacent \ side \ of \ $
5	What are the coordinates of the midpoint of the line joining the points (1 , 2) , (5 , 8)
	((6,8) , (8,6), (3,5) , (4,3))
	<u>Answer</u> .
	$\left(\frac{1+5}{2}, \frac{2+8}{2}\right) = \left(\frac{6}{2}, \frac{10}{2}\right) = (3,5)$
	For questions from 6 to 10 carries 2 scores each .
6	Fifth term of an arithmetic sequence is 21 and its ninth term is 37 .
	a) What is its common difference ?
	b) What is its first term ?
	Answer.
	a) common difference = $\frac{\text{term difference}}{\text{position difference}} = \frac{37-21}{9-5} = \frac{16}{4} = 4$
	b) First term = $x_5 - 4 \times d = 21 - 4 \times 4 = 21 - 16 = 5$
	{ or First term = $x_9 - 8 \times d = 37 - 8 \times 4 = 37 - 32 = 5$ }
7	In the figure ,A and B are the centres of the circles and tangents are drawn from a
	point P to the circles . PC = 5 cm , PE = 3 cm 5 cm
	a) What is the length of PD ? $(A \land B)$
	b) What is the length of CF ?
	<u>Answer .</u>
	a) PD = 5 cm . (PC = PD , The tangents to a circle from a point are of the
	same length)
	b) CF = PC + PF = 5 + 3 = 8 cm . (PE = PF = 3 cm)

8	The base radius and height of a cone are 9 centimetres and 12 centimetres .
	a) What is its slant height ?
	b) What is its curved surface area ?
	<u>Answer</u> .
	a) Slant height = $\sqrt{r^2 + h^2} = \sqrt{9^2 + 12^2} = \sqrt{81 + 144} = \sqrt{225} = 15 \ cm$
	b) Curved surface area = $\pi \times r \times l = \pi \times 9 \times 15 = 135 \pi \ sq. \ cm$
9	A circle of radius 5 is drawn with origin as centre.
	a) Write down the coordinates of a point at which the circle cuts the x -axis ?
	b) If (p , q) is a point on this circle , prove that $p^2 + q^2 = 25$.
	<u>Answer</u> .
	a) (5,0) or (-5,0)
	b) Radius = 5 ==.> $\sqrt{(p-0)^2 + (q-0)^2} = 5 = > \sqrt{p^2 + q^2} = 5$
	$p^2 + q^2 = 5^2 = 25$
10	In the figure sides of the rectangle KLMN are parallel to the axes .
	a)What are the coordinates of K ? $N(1,7)$ M
	b)What are the coordinates of M?
	K $L(6,5)$
	Answer .
	=
	a) Coordinates of $K = (1, 5)$
	b) Coordinates of M = (6,7)
	For questions from 11 to 20 carries 3 scores each.
11	Draw a triangle of circumradius 5 cm and two of the angles 70° and 80° .

14	A dice with faces numbered from 1 to 6 is rolled .
	a) What is the probability of getting an even number ?
	b) What is the probability of getting an odd number ?
	c) What is the probability of getting a perfect square ?
	Answer .
	a) Probability of getting an even number = $\frac{Number of favourable results}{Total number of results}$
	$= \frac{3}{6}$
	b) Probability of getting an odd number = $\frac{3}{6}$
	c) Probability of getting a perfect square = $\frac{2}{6}$
	{ Favourable results == > a) (2,4,6) b) (1,3,5) c) (1,4) }
15	When each side of a square was increased by 4 metres , the area became 256 square
	- metres .
	a) Write down a second degree equation by taking the side of the original square as x
	b) What was the length of a side of the original square ?
	Answer.
	a) $(x+4)^2 = 256$
	b) $x+4 = \sqrt{256} = 16$
	x = 16-4=12 = side of the original square = 12 m
16	In triangle ABC , $\langle B=30^\circ, \langle C=120^\circ, BC=6cm$
	a)What is the measure of $\langle A \rangle$?
	b)What is the perpendicular distance from A to the side BC
	c) What is the area of the triangle ? $B = \frac{30^{\circ}}{6 \text{ cm}} \frac{120^{\circ}}{C}$

	Answer.
	a) $< A = 180 - (30 + 120) = 180 - 150 = 30^{\circ}$
	b) ABC is an isosceles triangle .
	So BC = AC = 6 cm . B $^{6 cm}$ $C_{3 cm}$ D
	Draw the perpendicular from A to the side BC .
	In triangle ACD , $AD=3\sqrt{3}$ cm
	c) Area of the triangle ABC = $\frac{1}{2} \times BC \times AD = \frac{1}{2} \times 6 \times 3\sqrt{3} = 9\sqrt{3}$ sq.cm
17	If $p(x) = x^2 - 8x + 15$
	a) Find $p(3)$?
	b) Check whether $x-5$ is a factor of $p(x)$ or not ?
	c) Write $p(x)$ as the product of two first degree polynomials ?
	<u>Answer</u> .
	a) $p(3)=3^2-8\times3+15 = 9-24+15=24-24 = 0$
	b) $p(5)=5^2-8\times5+15 = 25-40+15=40-40 = 0 = x-5$ is a factor.
	c) $p(x) = (x-3)(x-5)$
18	The marks obtained by 9 students in a maths exam are given below .
	68,72,76,62,70,64,60,74,66
	a) what is the mean mark ?.
	b) What is the median mark .
	Answer.
	a) Mean = $\frac{60+62+64+66+68+70+72+74+76}{9} = \frac{612}{9} = 68$
	b) 60 , 62 , 64 , 66 , 68 , 70 , 72 , 74 , 76
	Median=68

19	The base radii of two cones are in the ratio 3 : 4 and their slant heights are in the	
	ratio 5:6	
	a) If the base radius of the first cone is taken as 3 r , what will be the base radius of	
	the second cone ?	
	b) What is the ratio of their curved surface areas ?	
	c) If the curved surface area of the first cone is 180π square centimetres , what	
	will be the curved surface area of the second cone ?	
	Answer.	
	a) $r_1 = 3r = r_2 = 4r$	
	b) $l_1 = 5l = > l_2 = 6l$	
	Ratio of the curved surface areas = $\pi \times 3r \times 5l$: $\pi \times 4r \times 6l = 15:24$	
	c) Curved surface area of the second cone = $\frac{24 \times 180}{15}$ = 288 π sq. cm	
20	In the figure S , T , U are the midpoints of the sides of the triangle DEF	
	S(4,3), T(6,4), U(3,5)	
	a)What are the coordinates of E ? $(3,5)U$	
	b)What are the coordinates of F ? $E \longrightarrow T(6,4)$	
	c)What are the coordinates of D?	
	F	
	Answer.	
	a) $(3+4-6, 5+3-4) = (1,4)$ (ESTU is a parallelogram)	
	b) $(4+6-3, 3+4-5) = (7,2)$ (SFTU is a parallelogram)	
	c) $(3+6-4, 5+4-3) = (5,6)$ (STDU is a parallelogram)	

For questions from 21 to 30 carries 4 scores each. Compute the following sums . 21 a) $1 + 2 + 3 + 4 + 5 + \dots + 20$ b) 4 + 8 + 12 + 16 + 20 + + 80 c) $5 + 9 + 13 + 17 + 21 + \ldots + 81$ d) 9 + 17 + 25 + 33 + 41 + \dots +161 Answer. a) 1 + 2 + 3 + 4 + 5 + ... + 20 = $\frac{20 \times 21}{2}$ = 210 **b)** 4 + 8 + 12 + 16 + 20 + \dots + 80 = 4×210 = 840 c) 5 + 9 + 13 + 17 + 21 + ... + 81 = $840+20\times1$ = 840+20 = 860 d) 9 + 17 + 25 + 33 + 41 + \dots +161 = 840+860 = 1700 22 In the figure ,chords PQ and RS are extended to meet at T. RT = 18 cm ,RS = 14 cm PQ is the midpoint of PT. a) What is the length of TS ? T S b) TP x TQ = R c) What is the length of PQ Answer. a) $TS = 18 - 14 = 4 \ cm$ **b)** $TP \times TQ = TR \times TS = 18 \times 4 = 72$ c) TQ = PQ(Q is the mid point of PT) $2TQ \times TQ = 72$ $TQ^2 = \frac{72}{2} = 36 = > TQ = \sqrt{36} = 6$ PQ = 6 cm

SARATH AS, GHS ANCHACHAVADI, MALAPPURAM

	b) In triangle	ABC,		
	AB = BC	$= 90 m \qquad (AB : Be$	C : AC := 1 : 1 : $\sqrt{2}$)	
	Height of t	he tower = $AB = 90 m$		
	c) In triangle	AED ,		
	DE = 90 m	$A = = AE = \frac{90}{\sqrt{3}} m$	$(AE : DE : AD := 1 : \sqrt{3})$	3 : 2)
	Height of t	he building = CD =BE =	$AB - AE = 90 - \frac{90}{\sqrt{3}} m$	
27	If $p(x)=x^2+x^2$	3 <i>x</i> +2	D_{L}	
	a) Find <i>p</i> (1) ?		
	b) Write a fa	ctor of $p(x)-p(1)$?		
	c) Write p	(x) - p(1) as the product of tw	o first degree polynomials ?	
	Answer .			
	a) $p(1)=1^2+3>$	$\times 1+2 = 1+3+2 = 6$		
	$\mathbf{F}(-) = -\mathbf{F}(-)$			
	D) $(x-1)$			
	c) $p(x) - p(1)$	$=x^2+3x+2$ $-6 = x^2+3x-4$		
	$x^{2}+3x-4$	= (x-1)(x+4)		
28	55 households i	n a neighbourhood are sorted a	according to their monthly in	come in
	the table below			
				1
		Monthly income (Rs)	Number of households	
		4000	6	-
		5000	9	-
		6000	10	-
		7000	9	-
		δυυυ	ŏ 7	
		10000	6	
1		10000	V	

a) If the households are arranged in increasing order of monthly income , what is the monthly income of the household at the 26th position ?

b) If the households are arranged in increasing order of monthly income , the

monthly income of the household at what position is taken as the median ?

c) Find the median of the monthly income ?

Answer.

Monthly income	Number of households
Up to 4000	6
Up to 5000	15
Up to 6000	25
Up to 7000	34
Up to 8000	42
Up to 9000	49
Up to 10000	55

- a) Monthly income of the 26th household = Rs 7000
- **b)** N=55

$$\frac{N+1}{2} = \frac{55+1}{2} = \frac{56}{2} = 28$$

Median = Monthly income of the 28th household.

c) median monthly income = Rs 7000

29 A sector of area 100π square centimetres is rolled up into a cone of base radius

5 centimetres .

a) What is curved surface area of the cone ?

b) What is the slant height of the cone ?

c) What is the radius of the sector ?

d) What is the central angle of the sector ?

<u>Answer</u>.

a) curved surface area of the cone = Area of the sector = $100 \pi \text{ sq. cm}$

b)
$$\pi \times r \times l = 100 \pi \implies \pi \times 5 \times l = 100 \pi \implies l = \frac{100 \pi}{5 \pi} = 20$$

Slant height of the cone $= 20 \ cm$
c) Radius of the sector = Slant height of the cone $= 20 \ cm$
d) $\frac{x}{360} = \frac{r}{R} \implies \frac{x}{360} = \frac{5}{20} \implies x = \frac{5 \times 360}{20} = 90^{\circ}$
Central angle of the sector $= 90^{\circ}$
30 The vertices of a triangle are A (1, 9), B (4, 6), C (3, 11)
a) What is the length of AB ?
b) What is the length of BC ?
c) Prove that ABC is a right triangle ?
Answer.
a) $AB = \sqrt{(4-1)^2 + (6-9)^2} = \sqrt{3^2 + (-3)^3} = \sqrt{9+9} = \sqrt{18}$
b) $BC = \sqrt{(3-4)^2 + (11-6)^2} = \sqrt{(-1)^2 + 5^2} = \sqrt{1+25} = \sqrt{26}$
c) $AC = \sqrt{(3-4)^2 + (11-6)^2} = \sqrt{2^2 + 2^2} = \sqrt{4+4} = \sqrt{8}$
 $AB^2 + AC^2 = (\sqrt{18})^2 + (\sqrt{8})^2 = 18 + 8 = 26 = (\sqrt{26})^2 = BC^2$
So ABC is a right triangle .
For questions from 31 to 45 carries 5 scores each .
31 Draw a rectangle of width 6 cm and height 3 cm . Draw a square of the same area .

SARATH A S , GHS ANCHACHAVADI $% \mathcal{A}$, MALAPPURAM

32	Look at the number pattern given below.
	1
	2 3
	4 5 6
	7 8 9 10
	a) Write down the next two more lines of this pattern ?
	b) How many numbers are there in the 20 th line ?
	c) What is the last number in the 19 th line ?
	d) What is the first number in the 20 th line ?
	Answer .
	a) 11 12 13 14 15
	16 17 18 19 20 21
	b) 20
	c) $\frac{19 \times 20}{2} = 190$
	d) $190 + 1 = 191$
33	In the figure $AC = 12 cm$, $< A = 60^{\circ}$, $< B = 45^{\circ}$
	The line <i>CD</i> is perpendicular to the side <i>AB</i> .
	a) What is the measure of <i>ACB</i> ? 12 <i>cm</i>
	b) What is the length of CD ?
	c) What is the area of triangle <i>ABC</i> ? $A D B$
	d)What is the ratio of the length of the sides if the ratio of angles of a triangle is 3:4:5

35	If $x^2 + 3x - 18 = (x - a)(x - b)$
	a) What is the value of <i>a+b</i> ?
	b) What is the value of <i>ab</i> ?
	c) Write $x^2 + 3x - 18$ as the product of two first degree polynomials ?
	Answer .
	a) $a+b=-3$
	b) $ab = -18$
	c) $a = -6$
	b=3
	$x^{2}+3x-18 = (x+6)(x-3)$
36	Consider the arithmetic sequence 63, 58, 53,
	a) What is its common difference ?
	b) What is the remainder when each positive term of this sequence is divided by 5 ?
	c) Which is the smallest positive number in this sequence ?
	d) What is its algebraic form ?
	e) How many positive numbers are there in this sequence ?
	Answer .
	a) -5
	b) 3
	c) 3
	d) $dn+f-d = -5n+63-(-5) = -5n+68$
	e) $x_n = 3 \rightarrow -5n + 68 = 3 \rightarrow 5n = 65 \rightarrow n = \frac{65}{5} = 13$

	c) $\angle RPQ = \angle RSQ = 60^{\circ}$
	Central angle of the arc RNQ = $2 \times \angle RPQ = 2 \times 60^{\circ} = 120^{\circ}$
	Sum of the central angles of the arcs PMS and $RNQ = 60^{\circ}+120^{\circ}=180^{\circ}$
39	In the figure , the circle touches the sides $$ of the triangle LMN at the points X ,Y , Z
	LX = 4 cm, $MY = 2 cm$, $NZ = 5 cm$.
	a) What is the length of LZ ? 4 cm
	b) What is the length of MN ?
	c) What is the perimeter of the triangle LMN ? $M^{2} cm Y$
	Answer.
	a) $LZ = LX = 4 \ cm$ (The tangents to a circle from a point are of the same length)
	b) $MX = MY = 2 \ cm$
	$YN = NZ = 5 \ cm$
	$MN = 2+5 = 7 \ cm$
	c) $LN = 5 + 4 = 9 \ cm$
	$LM = 4 + 2 = 6 \ cm$
	Perimeter of the triangle LMN = $LM+MN+LN=6+7+9=22 \ cm$
40	In the figure LM is a tangent . TU = VU U
	$< LSV = 40^{\circ}, < TSM = 70^{\circ}$
	a) What is the measure of $\langle STV \rangle$?
	b) What is the measure of < SVT ?
	c) What is the measure of $<$ TUV ? L S M

Answer.

 $\angle STV = 40^{\circ}$ (In a circle, the angle which a chord makes with the tangent at a) one end on any side is equal to the angle which it makes on the part of the circle on the other side) $\angle SVT = 70^{\circ}$ b) $\angle TSV = 180 - 110 = 70^{\circ}$ (Sum of the angles of a triangle is 180°) **c**) $\angle TUV = 110^{\circ}$ (STUV is cyclic . The opposite angles of a cyclic quadrilateral are supplementary) $\angle TVU = \frac{180 - 110}{2} = \frac{70}{2} = 35^{\circ}$ (TU = VU)d) In the figure O is the centre of the incircle . The circle 41 A touches the sides of the triangle at the points P, Q and R R $< ABC = 45^{\circ}$ 45° a) What is the measure of < POQ ? b) Draw a circle of radius 3 cm. Draw a triangle of angles 45°, 55°, 80° with all its sides touching this circle . <u>Answer</u>. a) < POQ = $180 - 45 = 135^{\circ}$ (In a circle, the angles between the radii through two points and the angle between the tangents at these points are supplementary) 135° 125° 3 cm

Answer. a) Radius of a fire work = $\frac{10 \pi}{2 \pi} = 5 cm$ **b**)Slant height of a fire work = $\sqrt{r^2 + h^2} = \sqrt{5^2 + 12^2} = 13 \ cm$ c) Surface area of a fire work = $\pi \times 5^2 + \pi \times 5 \times 13 = 90 \pi \text{ sg. cm}$ $= \frac{90 \pi}{10000} sq.m$ **d)** Total cost = $\frac{90 \times 3.14}{10000} \times 10000 \times 10 = Rs$ 2826 The vertices of a triangle are A(3,5), B(9,13), C(10,6). 44 a) What is the length of the side AB ? b) Prove that ABC is an isosceles triangle ? c) What are the coordinates of the midpoint of AB? d) What is the area of the triangle ABC ? Answer. **a**) $AB = \sqrt{(9-3)^2 + (13-5)^2} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10$ **b**) $BC = \sqrt{(10-9)^2 + (6-13)^2} = \sqrt{1^2 + (-7)^2} = \sqrt{1+49} = \sqrt{50}$ $AC = \sqrt{(10-3)^2 + (6-5)^2} = \sqrt{7^2 + 1^2} = \sqrt{49+1} = \sqrt{50}$ ABC is an isosceles triangle (BC = AC)c) Coordinates of the midpoint of AB = $(\frac{3+9}{2}, \frac{5+13}{2}) = (\frac{12}{2}, \frac{18}{2}) = (6,9)$ **d)Perpendicular distance from C to the side AB** = $h=\sqrt{(6-10)^2+(9-6)^2}=5$ (The line joining the common vertex of equal sides to the midpoint of its opposite side of an isosceles triangle is perpendicular to that side) Area of the triangle ABC = $\frac{1}{2} \times AB \times h = \frac{1}{2} \times 10 \times 5 = 25 \text{ sq. cm}$

