Qn no.	Key
For questions from 1 to 5 one score each .	
1 What is the algebraic form of the arithmetic sequence $5,8,11, \ldots$. ?$(2 n+3,3 n+2,4 n+1,5 n)$	
Answer.$\mathbf{d} \mathbf{n}+\mathbf{f}-\mathbf{d}=3 \mathbf{n}+5-\mathbf{3}=3 \mathbf{n}+\mathbf{2}$	
2	In the figure $<\mathrm{ADC}=\mathbf{8 0}^{\boldsymbol{0}}$. What is the measure of < CBE ? .
	Answer . $\left\{<\mathrm{CBA}=180-80=100^{\circ} \quad\right.$ (opposite angles of a cyclic quadrilateral are $\left.\left.<\mathrm{CBE}=180-100=80^{\circ} \quad(\text { linear pair }) \quad \text { supplementary }\right)\right\}$
3	What number is to be added to $x^{2}+20 x$ to get a perfect square? $(400,100,144,64)$
	Answer . $\left\{x^{2}+20 x+10^{2}=(x+10)^{2}\right\}$
4	In triangle $A B C,<B=\mathbf{9 0}^{\boldsymbol{}}, \sin A=\frac{3}{5}$, then $\cos C=$ \qquad $\left(\frac{4}{5}, \frac{3}{4}, \frac{4}{3}, \frac{3}{5}\right)$

	Answer . $\sin \mathrm{A}=\frac{\text { opposite side of }<A}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{3}{5}==>\cos C=\frac{\text { adjacent side of }<C}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{3}{5}$
5	What are the coordinates of the midpoint of the line joining the points $(1,2),(5,8)$ $((6,8),(8,6),(3,5),(4,3))$
	Answer . $\left(\frac{1+5}{2}, \frac{2+8}{2}\right)=\left(\frac{6}{2}, \frac{10}{2}\right)=(3,5)$
	For questions from 6 to 10 carries 2 scores each .
6	Fifth term of an arithmetic sequence is 21 and its ninth term is 37 . a) What is its common difference ? b) What is its first term ? Answer . a) commondifference $=\frac{\text { term difference }}{\text { position difference }}=\frac{37-21}{9-5}=\frac{16}{4}=4$ b) First term $=x_{5}-4 \times d=21-4 \times 4=21-16=5$ \{ or \quad First term $\left.=x_{9}-8 \times d=37-8 \times 4=37-32=5 \quad\right\}$
7	In the figure, A and B are the centres of the circles and tangents are drawn from a point P to the circles . $P C=5 \mathrm{~cm}, P E=3 \mathrm{~cm}$ a) What is the length of PD ? b) What is the length of CF ?
	Answer . a) $P D=5 \mathrm{~cm} . \quad(P C=P D$, The tangents to a circle from a point are of the same length) b) $\mathbf{C F}=\mathrm{PC}+\mathrm{PF}=5+3=8 \mathrm{~cm}$. $(\mathrm{PE}=\mathrm{PF}=3 \mathrm{~cm})$

8	The base radius and height of a cone are $\mathbf{9}$ centimetres and 12 centimetres . a) What is its slant height ? b) What is its curved surface area ?
	Answer . a) Slant height $=\sqrt{r^{2}+h^{2}}=\sqrt{9^{2}+12^{2}}=\sqrt{81+144}=\sqrt{225}=15 \mathrm{~cm}$ b) Curved surface area $=\pi \times r \times l=\pi \times 9 \times 15=135 \pi \mathrm{sq} . \mathrm{cm}$
9	A circle of radius 5 is drawn with origin as centre. a) Write down the coordinates of a point at which the circle cuts the x -axis ? b) If (\mathbf{p}, \mathbf{q}) is a point on this circle, prove that $\mathbf{p}^{\mathbf{2}}+\mathbf{q}^{\mathbf{2}}=\mathbf{2 5}$.
	Answer. a) $(5,0)$ or $(-5,0)$ b) Radius $=5==.>\sqrt{(p-0)^{2}+(q-0)^{2}}=5 \quad \Rightarrow \quad \sqrt{p^{2}+q^{2}}=5$ $p^{2}+q^{2}=5^{2}=25$
10	In the figure sides of the rectangle KLMN are parallel to the axes . a)What are the coordinates of K ? b)What are the coordinates of M ?
	Answer . a) Coordinates of $K=(1,5)$ b) Coordinates of $M=(6,7)$
	For questions from 11 to 20 carries 3 scores each .
11	Draw a triangle of circumradius 5 cm and two of the angles 70^{0} and $80{ }^{\circ}$.

12	Consider the arithmetic sequence $8,15,22, \ldots .$. a) What is its common difference ? b) What is its sixth term ? c)What is the sum of first $\mathbf{1 1}$ terms of this sequence ?
	Answer. a) Common difference $=15-8=7$ b) Sixth term $=8+5 \times 7=8+35=43$ c) Sum of first 11 terms $=11 \times$ midterm $=11 \times x_{6}=11 \times 43=473$
13	In the figure, tangents through the points B and C intersect at $P .<B A C=70^{\circ}$ a) What is the measure of < PBC ? b) What is the measure of <BPC ?
	Answer . a) $<\mathrm{PBC}=70^{\circ}$ (In a circle, the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side) $\begin{aligned} \text { b) } & <\mathrm{PBC}=<\mathrm{PCB}=70^{\circ} \quad(\mathrm{PB}=\mathrm{PC}) \\ & <\mathrm{BPC}=180-(\mathbf{7 0}+\mathbf{7 0})=180-140=40^{\circ} . \end{aligned}$

14	A dice with faces numbered from 1 to 6 is rolled . a) What is the probability of getting an even number ? b) What is the probability of getting an odd number ? c) What is the probability of getting a perfect square ? Answer. $\begin{aligned} \text { a) Probability of getting an even number } & =\frac{\text { Number of favourable results }}{\text { Total number of results }} \\ & =\frac{3}{6} \end{aligned}$ b) Probability of getting an odd number $=\frac{3}{6}$ c) Probability of getting a perfect square $=\frac{2}{6}$ \{ Favourable results $==>$ a) $(2,4,6)$ b) $(1,3,5)$ c) $(1,4)\}$
15	When each side of a square was increased by 4 metres, the area became 256 square - metres . a) Write down a second degree equation by taking the side of the original square as x b) What was the length of a side of the original square ? Answer . a) $(x+4)^{2}=256$ b) $x+4=\sqrt{256}=16$ $x=16-4=12==>$ side of the original square $=\mathbf{1 2} \mathbf{~ m}$
16	In triangle $A B C,<B=30^{\circ},<C=120^{\circ}, B C=6 \mathrm{~cm}$ a)What is the measure of $<A$? b)What is the perpendicular distance from A to the side BC c) What is the area of the triangle ?

	Answer. a) $\angle A=180-(30+120)=180-150=30^{\circ}$ b) ABC is an isosceles triangle . So $B C=A C=6 \mathrm{~cm}$. Draw the perpendicular from A to the side BC. In triangle $\mathbf{A C D}, \quad A D=3 \sqrt{3} \mathrm{~cm}$ c) Area of the triangle $\mathbf{A B C}=\frac{1}{2} \times B C \times A D=\frac{1}{2} \times 6 \times 3 \sqrt{3}=9 \sqrt{3} \mathrm{sq} . \mathrm{cm}$
17	If $p(x)=x^{2}-8 x+15$ a) Find $p(3)$? b) Check whether $x-5$ is a factor of $p(x)$ or not ? c) Write $\quad p(x)$ as the product of two first degree polynomials ?
	Answer . a) $p(3)=3^{2}-8 \times 3+15=9-24+15=24-24=0$ b) $p(5)=5^{2}-8 \times 5+15=25-40+15=40-40=0==>x-5$ is a factor . c) $p(x)=(x-3)(x-5)$
18	The marks obtained by 9 students in a maths exam are given below . $68,72,76,62,70,64,60,74,66$ a) What is the mean mark ? . b) What is the median mark .
	Answer . a) \quad Mean $=\frac{60+62+64+66+68+70+72+74+76}{9}=\frac{612}{9}=68$ b) $60,62,64,66,68,70,72,74,76$ $\text { Median }=68$

19 The base radii of two cones are in the ratio $3: 4$ and their slant heights are in the ratio 5: 6
a) If the base radius of the first cone is taken as 3 r , what will be the base radius of the second cone ?
b) What is the ratio of their curved surface areas ?
c) If the curved surface area of the first cone is 180π square centimetres, what will be the curved surface area of the second cone ?

Answer .
a) $r_{1}=3 r \quad==>\quad r_{2}=4 r$
b) $\quad l_{1}=5 l \quad==>\quad l_{2}=6 l$

Ratio of the curved surface areas $=\pi \times 3 r \times 5 l: \pi \times 4 r \times 6 l=15: 24$
c) Curved surface area of the second cone $=\frac{24 \times 180}{15}=288 \pi \mathrm{sq} . \mathrm{cm}$

20 In the figure $\mathrm{S}, \mathrm{T}, \mathrm{U}$ are the midpoints of the sides of the triangle DEF $\mathrm{S}(4,3), \mathrm{T}(6,4), \mathrm{U}(3,5)$
a)What are the coordinates of \mathbf{E} ?
b)What are the coordinates of F ?
c)What are the coordinates of D ?

Answer.

a) $(3+4-6,5+3-4)=(1,4)$
(ESTU is a parallelogram)
b) $(4+6-3,3+4-5)=(7,2)$
(SFTU is a parallelogram)
c) $(3+6-4,5+4-3)=(5,6)$
(STDU is a parallelogram)

21 Compute the following sums .

a) $1+2+3+4+5+\ldots \ldots \ldots+20$
b) $4+8+12+16+20+\ldots \ldots \ldots+80$
c) $5+9+13+17+21+\ldots \ldots \ldots+81$
d) $9+17+25+33+41+\ldots \ldots \ldots+161$

Answer .
a) $1+2+3+4+5+\ldots \ldots \ldots+20=\frac{20 \times 21}{2}=210$
b) $4+8+12+16+20+\ldots \ldots \ldots+80=4 \times 210=840$
c) $5+9+13+17+21+\ldots \ldots \ldots+81=840+20 \times 1=840+20=860$
d) $9+17+25+33+41+\ldots \ldots \ldots+161=840+860=1700$

22 In the figure, chords $P Q$ and $R S$ are extended to meet at T. RT = $18 \mathrm{~cm}, R S=14 \mathrm{~cm}$ Q is the midpoint of $P T$.
a) What is the length of TS ?
b) $\mathbf{T P} \times \mathrm{TQ}=$
c) What is the length of $\mathbf{P Q}$

Answer .
a) $\mathrm{TS}=18-14=4 \mathrm{~cm}$
b) $T P \times T Q=T R \times T S=18 \times 4=72$
c) $\quad T Q=P Q \quad(Q$ is the mid point of $P T)$
$2 T Q \times T Q=72$
$T Q^{2}=\frac{72}{2}=36 \quad=>\quad T Q=\sqrt{36}=6$
$P Q=6 \mathrm{~cm}$

23 Draw a circle of radius 3 cm and mark a point 7 cm away from its centre.
Draw the tangents to the circle from this point . Measure the length of the tangents .

24 One is asked to say a two -digit number .
a) How many two digit numbers are there ?
b) What is the smallest possible product of the digits ?
c) What is the largest possible product of the digits ?
d) What is the probability of the product of the digits being a perfect square ?

Answer .

a) 90
b) 0
c) 81
d) Favourable results $=11,14,22,41,19,33,91,28,44,82,55,49,66,94$,

$$
77,88,99
$$

Probability of the product of

$$
\begin{aligned}
\text { the digits being a perfect square } & =\frac{\text { Number of favourable results }}{\text { Number of total results }} \\
& =\frac{17}{90}
\end{aligned}
$$

25 The longer side of a rectangle is 4 centimetres more than its shorter side . The area of the rectangle is 672 square centimetres .
a) Write down a second degree equation by taking the shorter side as \mathbf{x}
b) What are the lengths of its the sides ?

Answer .
a) Shorter side $=x$

Longer side $=x+4$

$$
(x+4) x=672 \quad==>\quad x^{2}+4 x=672
$$

b) $x^{2}+4 x+2^{2}=672+2^{2}$

$$
\begin{gathered}
(x+2)^{2}=672+4=676 \\
x+2=\sqrt{676}=26 \\
x=26-2=24
\end{gathered}
$$

Shorter side $=x=24 \mathrm{~cm}$
Longer side $=x+4=24+4=28 \mathrm{~cm}$
26 A man standing on the top of a building sees the base of a tower at a depression of 45^{0} and its top at a depression of 30°. The distance between the building and tower is 90 metres .
a) Draw a rough figure based on the given details?
b) What is the height of the building ?
c) What is the height of the tower ?

Answer.

Height of the building = CD
Height of the tower $=\mathrm{AB}$

a) If the households are arranged in increasing order of monthly income, what is the monthly income of the household at the $26^{\text {th }}$ position ?
b) If the households are arranged in increasing order of monthly income , the monthly income of the household at what position is taken as the median ?
c) Find the median of the monthly income ?

Answer.

Monthly income	Number of households
Up to 4000	6
Up to 5000	15
Up to 6000	25
Up to 7000	34
Up to 8000	42
Up to 9000	49
Up to 10000	55

a) Monthly income of the $\mathbf{2 6}{ }^{\text {th }}$ household = Rs $\mathbf{7 0 0 0}$
b) $\quad N=55$

$$
\frac{N+1}{2}=\frac{55+1}{2}=\frac{56}{2}=28
$$

Median $=$ Monthly income of the $28^{\text {th }}$ household .
c) median monthly income = Rs 7000

29 A sector of area 100π square centimetres is rolled up into a cone of base radius 5 centimetres .
a) What is curved surface area of the cone ?
b) What is the slant height of the cone ?
c) What is the radius of the sector ?
d) What is the central angle of the sector ?

Answer.
a) curved surface area of the cone $=$ Area of the sector $=100 \pi \mathrm{sq} . \mathrm{cm}$
b) $\pi \times r \times l=100 \pi==>\quad \pi \times 5 \times l=100 \pi==>\quad l=\frac{100 \pi}{5 \pi}=20$

Slant height of the cone $=20 \mathrm{~cm}$
c) Radius of the sector $=$ Slant height of the cone $=20 \mathrm{~cm}$
d) $\frac{x}{360}=\frac{r}{R}==>\frac{x}{360}=\frac{5}{20}==>\quad x=\frac{5 \times 360}{20}=90^{\circ}$

Central angle of the sector $=90^{\circ}$
30 The vertices of a triangle are $A(1,9), B(4,6), C(3,11)$
a) What is the length of $A B$?
b) What is the length of BC ?
c) Prove that ABC is a right triangle ?

Answer.
a) $A B=\sqrt{(4-1)^{2}+(6-9)^{2}}=\sqrt{3^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}$
b) $\quad B C=\sqrt{(3-4)^{2}+(11-6)^{2}}=\sqrt{(-1)^{2}+5^{2}}=\sqrt{1+25}=\sqrt{26}$
c) $A C=\sqrt{(3-1)^{2}+(11-9)^{2}}=\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}$

$$
A B^{2}+A C^{2}=(\sqrt{18})^{2}+(\sqrt{8})^{2}=18+8=26=(\sqrt{26})^{2}=B C^{2}
$$

So ABC is a right triangle .
For questions from 31 to 45 carries 5 scores each .

31 Draw a rectangle of width $\mathbf{6 c m}$ and height $\mathbf{3 c m}$. Draw a square of the same area .

32 Look at the number pattern given below.
1
23

456
$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$
\qquad
\qquad
a) Write down the next two more lines of this pattern ?
b) How many numbers are there in the $20{ }^{\text {th }}$ line?
c) What is the last number in the $19{ }^{\text {th }}$ line ?
d) What is the first number in the $20{ }^{\text {th }}$ line ?

Answer.
a) $\begin{array}{lllll}11 \quad 12 \quad 13 \quad 14 \quad 15\end{array}$
$\begin{array}{llllll}16 & 17 & 18 & 19 & 20 & 21\end{array}$
b) $\mathbf{2 0}$
c) $\frac{19 \times 20}{2}=190$
d) $\mathbf{1 9 0}+\mathbf{1 = 1 9 1}$

33 In the figure $A C=12 \mathrm{~cm}, \angle A=60^{\circ}, \angle B=45^{\circ}$ The line $C D$ is perpendicular to the side $A B$.
a) What is the measure of $<A C B$?
b) What is the length of $C D$?
c) What is the area of triangle $A B C$?

d)What is the ratio of the length of the sides if the ratio of angles of a triangle is 3:4:5

	Answer
	a) $\angle A C B=30+45=75^{\circ}$ b) $C D=6 \sqrt{3} \mathrm{~cm}$ $\text { c) Area of the triangle } \begin{aligned} \mathbf{A B C} & =\frac{1}{2} \times A B \times C D \\ & =\frac{1}{2} \times(6+6 \sqrt{3}) \times 6 \sqrt{3} \mathrm{sq} . \mathrm{cm} \end{aligned}$ d) Ratio of the angles $=3: 4: 5$ $\text { Angles }=180 \times \frac{3}{12}, 180 \times \frac{4}{12}, 180 \times \frac{5}{12}=45^{\circ}, 60^{\circ}, 75^{0}$ Ratio of the sides $=12: 6 \sqrt{6}: 6 \sqrt{3}+6=2: \sqrt{6}: \sqrt{3}+1$
34	In the figure $\angle B A C=30^{\circ}, \angle A B C=45^{\circ}, \angle A E C=90^{\circ}, \angle B D E=60^{\circ}, A C=12 \mathrm{~cm}$ a) What is the length of $C E \quad$? b)What is the length of $B E \quad$? c)What is the length of $A B$? d) What is the area of the triangle $B C D$?
	Answer. a) $C E=6 \mathrm{~cm}$ b) $B E=6 \mathrm{~cm}$ c) $A B=6 \sqrt{3}+6 \mathrm{~cm}$ d) $C D=6+\frac{6}{\sqrt{3}} \mathrm{~cm}$ Area of the triangle $B C D=\frac{1}{2} \times C D \times B E=\frac{1}{2} \times\left(6+\frac{6}{\sqrt{3}}\right) \times 6 \mathrm{sq} . \mathrm{cm}$

35 If $x^{2}+3 x-18=(x-a)(x-b)$
a) What is the value of $a+b$?
b) What is the value of $a b$?
c) Write $x^{2}+3 x-18$ as the product of two first degree polynomials ?

Answer.
a) $a+b=-3$
b) $a b=-18$
c) $\quad a=-6$
$b=3$
$x^{2}+3 x-18=(x+6)(x-3)$

36 Consider the arithmetic sequence $63,58,53$,
a) What is its common difference ?
b) What is the remainder when each positive term of this sequence is divided by 5 ?
c) Which is the smallest positive number in this sequence ?
d) What is its algebraic form ?
e) How many positive numbers are there in this sequence ?

Answer .
a) -5
b) 3
c) 3
d) $d n+f-d=-5 n+63-(-5)=-5 n+68$
e) $x_{n}=3 \rightarrow-5 n+68=3 \rightarrow 5 n=65 \rightarrow n=\frac{65}{5}=13$

37 a) Draw the axes and mark the following points $A(4,1), B(-2,1), C(-2,-1)$ D (4,-1).
b) Write the most suitable name of the quadrilateral ABCD ?

Answer .
a)

b) Rectangle

38 In the figure the chords PQ and RS are perpendicular to each other.$<$ PRS $=30^{\circ}$
a) What is the measure of < PQS ?
b) What is the central angle of the arc PMS ?
c) What is the sum of the central angles of the arcs PMS
 and RNQ ?

Answer.
a) $\angle P Q S=\angle P R S=30^{\circ}$ (All angles made by an arc on the alternate arc are equal)
b)Central angle of the arc PMS $=2 \times \angle P R S=2 \times 30=60^{\circ}$
(The central angle of an arc is double the angle made by it on the alternate arc)

	c) $\angle R P Q=\angle R S Q=60^{\circ}$ Central angle of the arc RNQ $=2 \times \angle R P Q=2 \times 60^{\circ}=120^{\circ}$ Sum of the central angles of the arcs PMS and $\mathbf{R N Q}=60^{\circ}+120^{\circ}=180^{\circ}$
39	In the figure, the circle touches the sides of the triangle $L M N$ at the points X, Y, Z $L X=4 \mathrm{~cm}, M Y=2 \mathrm{~cm}, N Z=5 \mathrm{~cm}$. a) What is the length of LZ ? b) What is the length of MN ? c) What is the perimeter of the triangle LMN ? Answer . a) $L Z=L X=4 \mathrm{~cm}$ (The tangents to a circle from a point are of the same length) b) $M X=M Y=2 \mathrm{~cm}$ $\begin{aligned} & Y N=N Z=5 \mathrm{~cm} \\ & M N=2+5=7 \mathrm{~cm} \end{aligned}$ c) $L N=5+4=9 \mathrm{~cm}$ $L M=4+2=6 \mathrm{~cm}$ Perimeter of the triangle $\mathbf{L M N}=L M+M N+L N=6+7+9=22 \mathrm{~cm}$
40	In the figure LM is a tangent $. \mathrm{TU}=\mathrm{VU}$ $<\mathrm{LSV}=40^{\circ},<\mathrm{TSM}=70^{\circ}$ a) What is the measure of < STV ? b) What is the measure of < SVT ? c) What is the measure of < TUV ?

	Answer . a) $\angle S T V=40^{\circ} \quad$ (In a circle , the angle which a chord makes with the tangent at one end on any side is equal to the angle which it makes on the part of the circle on the other side) b) $\angle S V T=70^{\circ}$ c) $\angle T S V=180-110=70^{\circ} \quad$ (Sum of the angles of a triangle is $\mathbf{1 8 0}^{\boldsymbol{\circ}}$) $\angle T U V=110^{\circ} \quad$ (STUV is cyclic. The opposite angles of a cyclic quadrilateral are supplementary) d) $\angle T V U=\frac{180-110}{2}=\frac{70}{2}=35^{\circ}$ $(T U=V U)$
41	In the figure O is the centre of the incircle . The circle touches the sides of the triangle at the points P, Q and R $<\mathrm{ABC}=45^{\circ}$ a) What is the measure of < POQ ? b) Draw a circle of radius $\mathbf{3} \mathrm{cm}$. Draw a triangle of angles $45^{\circ}, 55^{\circ}, 80^{\circ}$ with all its sides touching this circle .
	Answer . a) $<P O Q=180-45=135^{\circ}$ (In a circle, the angles between the radii through two points and the angle between the tangents at these points are supplementary)

42 In th figure, O is the centre of the circle. AP is a tangent . AQ is perpendicular to OP .
a) What is the measure of < OAP ?
b) Prove that the angles of the triangles OAP and $O A Q$ are same ?

c) Prove that $\mathrm{OP} \times \mathrm{OQ}=\mathrm{OA}^{2}$?

Answer .

A) $\angle O A P=90^{\circ}$ (The tangent at a point on a circle is perpendicular to the radius through that point)
b) $\angle O A P=\angle O Q A=90^{\circ}, \angle A O P=\angle A O Q, \angle O P A=\angle O A Q$
c) Since the angles of the triangles OAP and OAQ are equal , their sides taken in the order of size, are in the same ratio

$$
\begin{aligned}
& \frac{O P}{O A}=\frac{O A}{O Q} \\
& O P \times O Q=O A \times O A \\
& O P \times O Q=O A^{2}
\end{aligned}
$$

43 A conical fire work is of base perimeter 10π centimetres and height 12 centim etres . 10000 such fire works are to be wrapped in colour paper .The price of the colour paper is $\mathbf{1 0}$ rupees per square metre.
a) What is the base radius of a fire work ?
b) What is the slant height of a fire work ?
c) What is the surface area of a fire work ?
d) What is the total cost ?
(hint : $\pi=3.14$)

Answer .

a) Radius of a fire work $=\frac{10 \pi}{2 \pi}=5 \mathrm{~cm}$
b)Slant height of a fire work $=\sqrt{r^{2}+h^{2}}=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$
c) Surface area of a fire work $=\pi \times 5^{2}+\pi \times 5 \times 13=90 \pi$ sq. cm

$$
=\frac{90 \pi}{10000} \text { sq.m }
$$

d) Total cost $=\frac{90 \times 3.14}{10000} \times 10000 \times 10=$ Rs 2826

44 The vertices of a triangle are $A(3,5), B(9,13), C(10,6)$.
a) What is the length of the side $A B \quad$?
b) Prove that ABC is an isosceles triangle ?
c) What are the coordinates of the midpoint of $A B$?
d) What is the area of the triangle ABC ?

Answer.
a) $A B=\sqrt{(9-3)^{2}+(13-5)^{2}}=\sqrt{6^{2}+8^{2}}=\sqrt{36+64}=\sqrt{100}=10$
b) $B C=\sqrt{(10-9)^{2}+(6-13)^{2}}=\sqrt{1^{2}+(-7)^{2}}=\sqrt{1+49}=\sqrt{50}$

$$
A C=\sqrt{(10-3)^{2}+(6-5)^{2}}=\sqrt{7^{2}+1^{2}}=\sqrt{49+1}=\sqrt{50}
$$

ABC is an isosceles triangle $\quad(\mathrm{BC}=\mathrm{AC})$
c) Coordinates of the midpoint of $\mathbf{A B}=\left(\frac{3+9}{2}, \frac{5+13}{2}\right)=\left(\frac{12}{2}, \frac{18}{2}\right)=(6,9)$
d)Perpendicular distance from \mathbf{C} to the side $\mathbf{A B}=h=\sqrt{(6-10)^{2}+(9-6)^{2}}=5$
(The line joining the common vertex of equal sides to the midpoint of its opposite side of an isosceles triangle is perpendicular to that side)

Area of the triangle $\mathbf{A B C}=\quad \frac{1}{2} \times A B \times h=\frac{1}{2} \times 10 \times 5=25$ sq.cm

