Class-10 Physics

GENERAL EDUCATION DEPARTMENT SAMAGRA SHIKSHA, KERALA

Physics

Class 10

UNIT I

Effects of Electric Current

Focus Area

Energy conversion in electrical equipments.

Points to Remember

Electric energy can easily be converted to other forms of energy using suitable devices.

Activity 1

Complete the table given below.

Conversion	Effect
	Heating effect
	Lighting effect
Electrical Energy to mechanical energy.	
Electrical Energy to chemical Energy.	
	Heating effect
	Heating effect
	Conversion Electrical Energy to mechanical energy. Electrical Energy to chemical Energy.

• Focus Point

Heating effect of electric current.

Joule's law.

Related mathematical problems.

Points to Remember

Joule's Law: The heat generated (H) in a current carrying conductor is directly proportional to the product of the square of the current (I) in the conductor, the resistance of the conductor (R) and the time (t) of flow of current.

 $H = I^2 Rt$ H = VIt $H = V^2 t/R$

- → When the current in the circuit is doubled heat generated becomes four times.
- \rightarrow If the current is halved heat generated becomes 1/4 times.
- → Instruments that make use of heating effect of electric current are electric heating appliances.
- → In electric heating appliances heat is produced in the heating coil.
- → Heating coils are made up of nichrome.
- → Nichrome has high melting point and high resistivity

Physics

Class 10

Activity 2

A copper wire and nichrome wire of same length and cross section area are connected in two circuits as shown.

a. Identify the circuit having more

current.

b. Find out the wire in which more heat is generated.

Activity 3

An electric kettle of 1500 Ω works on 230 V supply.

a) Write the energy change taking place in the electric kettle.

b)Calculate the electrical energy consumed when heater works for one hour

Activity 4

0.1 A current flows through a resistor of resistance 500 Ω for three minute.

a. Calculate the heat generated.

b. What will be the heat if resistance is changed to $1000 \,\Omega$ keeping current and time remain the same?

c. What will be the heat if current is doubled keeping resistance and time remain the same?

Focus Point

Parallel and series combination of resistance

Related mathematical problems.

Points to Remember

- → Effective resistance is the sum of the resistance of all the resistors when they are connected in parallel. R= R₁+R₂
- \rightarrow Effective resistance when they are connected in parallel.

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or $R = \frac{R_1 R_2}{R_1 + R_2}$

Samgra Shiksha Kerala	Physics	Class 10
\rightarrow If resistors of the same value are connected	in parallel then	
$R - \frac{r}{r}$		
$n = \frac{n}{n}$		
→ Itr	resistors are in series then R =	rxn
where 'n' is the number of resistors and 'r' is	the resistance of one resistor.	
Activity 5		
Arrange following statements in the given table.		
*When the number of resistors increases current a	lso increases.	
* When number of resistors increases effective resi	stance decreases.	
* Same amount of current passes through all the re	sistors.	
* Potential difference is same for all the resistors.		
* High resistor gets heated more.		
* Applied voltage will be split among the resistors.		
* Effective resistance is minimum.		
Series connection	Parallel Conne	ction
Activity 6		
See the circuit,		
a. The resistors are connected in		
(series/parallel)	A 100Ω	B 200Ω C
b. What is the effective resistance in the circuit?	•	
c. High voltage is dropped across		
(100 Ω/200 Ω)		
d. More heat will be generated in	30	V
(100 Ω/200 Ω)		
e. Identify the resistor through which large current	passes.	
f. If potential difference between 100 Ω is 10V, how	w much work is done by the ba	Ittery to move one
coulomb charge from A to B?		
Activity 7		

- a) Calculate the effective resistance.
- b) What will be the effective resistance if they were connected in series?

Samgra Shiksha Kerala	Physics	Class 10
Activity 8		
The resistance of 2 Ω , 3 Ω and 6 Ω are given to you,		
a) What is the highest resistance that you can get using	all of them?	
b) What is the least resistance that you can get using all	l of them?	
c) Can you make resistance 4.5 Ω using these three? D	raw the circuit	diagram.
Activity 9		
Instruments that make use of heating effect of electric curre	ent are electric he	eating appliances.
a) Write any two examples for electric heating appliances.		
b) Which alloy is used to make heating coils in heating	appliances ?	
c) Why do we use this alloy as heating coil.?		
Focus Point		
Safety Fuse		
Points to Remember		
ightarrow Safety fuse is a device that works on the heating effe	ect of electric cu	rrent.
➔ Fuse wire has low melting point.		
→ During overloading and short circuit the fuse wire me	elts and circuit b	reaks.
Activity 10		
Safety fuse is a device that protect circuit and appliances fr	om danger due	to excess flow of current
through the circuit.		
a. Which effect of current is used in safety fuse?		
b. How is the fuse connected in a circuit? (in parallel/series)	
c. What must be the major feature of the substance used to	make fuse wire	?
d. Briefly explain how does a safety fuse make sure the safe	ety of circuit and	appliance.
e. What is your opinion about using thick wire as fuse wire?	•	
f. Write the precautions to be taken while using fuse.		
Activity 11		
Amperage indicates current bearing capacity of a conducto	or/electric device	
a) What do you meant by amperage?		
b) What is the relation between amperage and thickness of	a wire	
Focus Area		
Electric Power - Related mathematical problems		

Samgra Shiksha Kerala Class 10 **Physics** Points to remember. → The amount of energy consumed by an electrical appliance in unit time is power. → Unit of power is watt (W) \rightarrow Electric power P= I²R P=VI $P=V^2/R$ Activity 12 Observe the circuit given below: 40W, 230 V a) What is the power of the bulb in the circuit? b) What is the resistance of the bulb? c) When a 60 W bulb also is connected series in this circuit which bulb glows more brightly? Justify your answer. 230Activity 13 An electric appliance designed to work at 230 V has 1000 Ω resistance. Find its power. Activity 14 The marking on an electrical appliance is 800 W, 200 V. a. If it works on 100 V, what will be the consumed power? b. What is the power when it works on 50 V ? Activity 15 A heating appliance has a resistance of 200 Ω . If 1 A current flows through it, What is the power of the appliance? **Focus Point** Lighting effect of electric current, Filament lamps Points to remember → The filament of incandescent lamp is made up of tungsten metal. → Tungsten metal has high resistivity and high melting point. → In order to avoid oxidation of tungsten the bulb is evacuated. → To avoid vaporisation the bulb is filled with some inert gas at low pressure or filled with nitrogen. Activity 16 Filaments lamps are also called incandescent lamps. a. What is the meaning of the word 'incandescent' b. Name the substance used for making filament? c. What are the features of this substance? d. What are the advantages of filling the bulbs with nitrogen after removing air from them? 5

Samgra Shiksha Kerala	Pl	iysics Class 10
e. What is the major limitation of	filament lamp?	
Activity 17		
Bulb will glow if the broken filamer	nt will be connected together	
a)What happens to the length of th	ne filament, increase/decrease	
b) What happens to the resistance	e of the filament, increase /decreas	Se
c) What happens to the brightness	s of bulb, Justify your answer	
Activity 18		
Match the following		
A	В	С
Fuse wire	Watt	$R=R_1+R_2+R_3$
Incandescent lamp	Decrease in effective resistance	l²R
Heating device	tungsten	$1/R=1/R_1+1/R_2+1/R_3$
Resistors in series	Low melting point	Electric energy into heat energy
Power	Increase in effective resistance	Tin and Lead
Resistors in parallel	nichrome	Nitrogen

UNIT I Effects of Electric Current

ANSWER KEY

1.

Devices	Conversion	Effect
Electrc stove	Electrical energy to heat energy	Heating effect
Electric bulb	Electrical energy to light energy	Lihting effect
Electric fan & motor	Electrical energy to mechanical energy	Mechanical/Magnetic effect
Battery (charging)	Electrical energy to chemical energy	Chemical effect
Induction cooker	Electrical energy to heat energy	Heating effect
Electric Oven	Electrical energy to heat energy	Heating effect

Samgra Shiksha Kerala	Physics	Class 10
2. a. As resistance of copper wire is less than that of n	ichrome wire, more cu	ırrent will flow through
circuit - 1		
b. For the same voltage heat is inversely proportion.	al to resistance. So more	heat will be
produced in copper as its resistance is small.		
3. a. Electrical energyHeat_Energy		
b. H= V ² t / R		
V = 230 V		
R = 1500 Ω		
t = 1 X 60 X 60 = 3600		
$H = (230)^2 X 3600$		
1500		
= 126960 J		
4. a. H = I^2Rt = 0.1 x 0.1 x 500 x 3 x 60 = 900 J		
b. H = 0.1 x 0.1 x 1000 x 3 x 60 = 1800 J		
c. H = 0.2 x 0.2 x 500 x 3 x 60 = 3600 J.		
When current is doubled, the heat is increased by	r four times.	
5.		
Series connection of resistors	Parallel connection of resi	istors
Same amount of current passes through all the resistors	When the number of resistonincreases.	ors increases current also
Applied voltage will be split among the resistors	When the number of resistor resistance decreases	ors increases effective
High resistor gets heated more	Potential difference is same	for all the resistors
	Effective resistance is minin	mum.
6. a. Series.		
b. $300 \Omega (R = R_1 + R_2)$		
c. 200 12 (when resistors are connected in seri	es more voltage is di	ropped across high
d 200 O (When registers are connected in corr	ion more boot in announce	d in radiator having high
	les more near is generate	eu in resistor naving fligh

e. Same current passes through both resistors. (When resistors are connected in series same current passes through all the resistors)

Samgra Shiksha Kerala	Physics	Class 10
f. 10J (If potential difference between two point is V volt, V joule	of work is to	be done to move one
coulomb charge from one point to other).		
7. a) R= r/n		
= 2/10 = 0.2 ohm		
b) R = r x n		
= 2 x 10 = 20 ohm		
8. a. Highest resistance, $R=R_1+R_2+R_3$		
$R = 2+3+6 = 11 \Omega$		
b. Least resistance $,1/R=1/R_1+1/R_2+1/R_3$		
$1/R = 1/2 + 1/3 + 1/6 = 6/6 = 1 \Omega$		
	C.	
	9. a) Iron bo	ox, Electric Heater.
b) Nichrome.		
c) High resistivity, High melting point, It can remain red hot for I	ong tir	ne without getting
oxidised.		
10. a. Heating effect.		
b. In series		
c. Low melting point.		
d. Melting point of fuse wire is low. When excess current flows through	ough the circ	cuit due to short circuit
or over loading, the fuse gets heated. As its melting point is low, it	melts and th	ne circuit is broken.
e. If we use thick wire, it may not melt and break while excess cur	ent flows th	rough the circuit. So it is
not good to use thick wire as fuse wire.		
f. *The ends of the fuse wire must be connected firmly at appro	priate po	pints
*Fuse wire should not project out of the carrier base.		
* Use fuse wire having required amperage/ thickness accord	rding to th	e load of the circuit.
* Use fuse wires made of suitable material having low melt	ing	point.
11. a) Amperage is the ratio of the power of the equipment to the	to the vo	oltage applied.
b) Amperage increases with thickness.		
12. a) 40 W		
8		

Samgra Shiksha Kerala	Physics	Class 10
b) R = V ² /P = 230 x 230/40 = 1322.5 Ω		
c) 40 W bulb, Resistance is more.		
13. Power P = V^2/R		
= 230x230/1000 =52.9 W		
14. a. Resistance of the appliance,		
$R = V^2 / P$		
= 200x200/800 = 50 Ω		
Power when it is worked on 100V,		
$P = V^2/R$		
= 100x100/50 = 200W.		
b. Power when it is worked on 50V,		
$P = V^2/R = 50x50/50 = 50W$		
15. P = I ² R = 1 x 1 x 200 = 200 W		
16. a. Glowing with heat.		
b. Tungsten		
c. Ability to emit white light on being heated, high mel	ting point, high re	esistivity, high ductility.
d. Prevent oxidation and vaporisation of filament.		
e. Major portion of electrical energy consumed is lost	in the form of he	eat.
17. a. Decreases		
b. Decreases		
c. The intensity of light increases		
18.		

А	В	С
Fuse wire	Low melting point	Tin and Lead
Incandescent lamp	tungsten	Nitrogen
Heating device	nichrome	Electric energy into heat energy
Resistors in series	Increase in effective resistance	$R=R_1+R_2+R_3$
Power	Watt	l²R
Resistors in parallel	Decrease in effective resistance	$1/R = 1/R_1 + 1/R_2 + 1/R_3$

c) Suggest a method to reverse the direction of deflection of the magnetic needle?

Activity 6

List the parts of DC motor Activity 7

Figure shows a Moving coil loudspeaker.

- a) Name the parts marked A and B?
- b) What is the energy conversion in this device?
- c) What is the working principle of a moving coil loudspeaker?
- d) Explain the working of this device.

Answer

Activity 1

Samgra Shiksha Kerala	Physics	Class 10
(a) Anticlockwise direction.		
Maxwell's Right hand thumb rule		

- (b) When a current is passed through the conductor, a magnetic field is produced around it.
- (c) Reverse the direction of current.

Activity 2

Solenoid	Bar magnet
Magnetic field is temporary	Magnetic field is permanent
Polarity can be reversed	Polarity cannot be reversed
Magnetic field strength can be	Magnetic field strength cannot be
increased or decreased	increased or decreased
as desired	as desired

Activity 3

Intensity of electric current Number of turns Area of cros section Soft iron core

Activity 4

(a) South Pole

(b) In the end Q, the current is in anti clockwise direction and hence it is the North pole. Hence this end attracts the South pole of the magnetic needle

Activity 5

(a) electric energy is converted in to mechanical energy(b) Moving coil loud speaker

Activity 6

Armature

Physics

Field magnet Brushes Bplitring commutator

Activity 7

(a) A-voice coil, B- Field Magnet

(b) Electric energy in to Sound energy

(c) Motor principle

(d) The electrical pulses from a microphone are strengthened using an amplifier and sent through the

voice coil of a loudspeaker. The voice coil, which is placed in the magnetic field, moves to and fro

rapidly, in accordance with the electrical pulses. These movements make the diaphragm vibrate,

thereby reproducing sound.

UNIT 3 ELECTROMAGNETIC INDUCTION

Focus Point

Electromagnetic Induction, Factors affecting the induced emf

Points to Remember

- Whenever there is a change in the magnetic flux linked with a coil, an emf is induced in the coil. This phenomenon is called electro-magnetic induction.
- The factors affecting the induced emf are
 - 1. Number of turns of the coiled conductor
 - 2. Strength of the magnet
 - 3. Movement of magnet or solenoid

Activity -1

You are given a Bar magnet ,a Solenoid and a Galvanometer

- (i) Draw the complete circuit of the experiment done in class room, to produce electric current using the components shown.
- (ii) Which phenomenon causes the production of electricity through the circuit.
- (iii) Define this phenomenon.
- (iv) Fill the observation column suitably

Diagram	Activity	Observation
	Magnet is moved in to the solenoid	

Samgra Shiksha Kerala		Physics	Class 10
	Magnet is stationary in the solenoid	side	
	Magnet is moved out of solenoid	the	
Activity 2 Observe the figure:			
			Electric current is
produced in the circuit when a	n experiment is setup as shown	in figure.	Licenie current is
i) Name the phenomenon behi	nd the flow of current.	0	
ii) Write the name of the curre	nt produced in the coil		
iii) Write the definition for this	phenomenon.		
iv) What are the factors influer	icing the intensity current ?		
Focus Point			
AC generator – Structure and	vorking		
Foints to Remember	tion		
Electromagnetic muuc Enorgy change : Mech	uon unical Eporgy to Electrical Epor	-017	
Main Parts · Field max	met Armature Slip rings Brue	By shes	
• In an AC generator th	ne induced emf generated in th	ne first half rotation in	one direction and that
generated in the second	half rotation in the opposite di	rection together form the	e cycle of AC.
The number of cycles r	per second is the frequency of A	C.	
The frequency of AC g	enerated for distribution in our o	country is 50 cycles per	second or 50 Hz.
	17		

Samgra Shiksha Kerala	Physics	Class 10

- If the frequency of AC is to be 50 Hz, the armature coil is to rotate fifty times per second.
- To overcome this practical difficulty the number of rotations is reduced by increasing the number of armature coils and the number of pole pieces of the field magnet in a generator.

Activity -3

Observe the given figure and answer the following questions:

Physics

Class 10

Points to Remember

• Main Parts of DC generator

Field magnet , Armature , Split ring commutator , Brushes

• The split ring commutator used in a DC generator is to convert AC into DC .

Activity 5

Observe the figure and write the difference in structure between the AC generator and a DC generator?

DC GENERATOR

Activity 6

Graphic representation of the emf from AC generator , DC generator , Cell are given in the table below . Observe the figure and complete the table

Focus Point

Self Induction

Points to Remember

- The change in magnetic flux due to the flow of an AC in a solenoid will generate a back emf in the same solenoid in a direction opposite to that applied to it. This phenomenon is known as the self induction.
- Inductor is a device which works on the principle of self Induction.

Activity 7

Copper wires of same length and thickness are connected as coiled or not coiled form to the below five circuits. Observe the circuits and answer the following questions

Physics

Class 10

 Consider two coils of wire kept side by side. When the strength or direction of the current in one coil changes, the magnetic flux around it changes. As a result, an emf is induced in the secondary coil. This phenomenon is called the mutual induction

Activity 8

when the switch S is turned on, the bulb suddenly glows and turns off

(a) Name and explain the phenomenon by which electricity passed through the second coil.

(b) Suggest a method for the continuous glowing of bulb.

(c) Name the coil P and Q in the circuit?

Focus Point

Transformer - Structure and Working

Points to Remember

- Mutual induction
- Transformer is a device for increasing or decreasing the voltage of an AC without any change in the electric power.
- Transformers are of two types
 - Step up transformer ,Step down transformer

Activity 9

1. Transformer is a device used to change the voltage without changing the power.

Differentiate the statements given below suitable to the step-up and step-down transformers.

- (a) Number of turns in primary coil is lesser than that of secondary coil.
- (b) Number of turns in primary coil is greater than that of secondary coil.
- (c) Input voltage is greater than output voltage.
- (d) Output voltage is greater than input voltage.
- (e) Thickness of primary coil is greater than that of secondary coil.

Samgra Shiksha Kerala	Physics	Class 10

(f) Thickness of secondary coil is greater than that of primary coil.

(g) Input current is greater than output current.

(h) Output current is greater than input current.

Activity 10

Examine the Table and answer the following questions.

Primary			Secondary			
Transformer	Total voltage Vp	No. of turns Np	Voltage in one turn (ε) Vp/Np	Total voltage Vs	No. of turns Ns	Voltage in one turn (ε) Vs/Ns
T1	500 V	100	5 V	50 V	10	5 V
T2	20 V	10	2 V	200 V	100	2 V
Т	Np×ε	Np	3	Νs×ε	Ns	8

1. What kind of transformers are T_1 and T_2 ?

2. What is the voltage in one turn when 500 V is given as input in T_1 primary?

3. Is there a change in one turn voltage of the same transformer when the output voltage decreases to 50 V?

4. Is there a voltage change in each turn of the primary and secondary in the step up transformer T_2 ?

5. How the ratio of voltages to the number of turns in each of the transformers, primary and secondary is related? Write this ratio in mathematical form.

6. What could be the reason for using thicker wire windings in the primary of a step up transformer and the secondary of a step down transformer?

Activity 11

In a transformer without any loss in power, there are 5000 turns in the primary and 250 turns in the secondary. The Primary voltage is 120V and the primary current is 0.1A. Find the voltage and current in the secondary

Focus Point

Moving Coil Microphone

Points to Remember

- Electromagnetic induction
- The energy transformation that takes place in a moving coil microphone is Mechanical energy Electrical energy.
- The main parts of a moving coil microphone are

Samgra Shiksha Kerala Class 10 **Physics** Diaphragm, Permanent magnet and voice coil. Activity 12 In connection with the working of a microphone, a few statements are given in boxes. Arrange them in the proper sequence. electric signals are produced Voice coil vibrates diaphragm vibrates in the voice coil Sound is produced Focus Point Power Transmission in high voltage **Points to Remember** When electricity is transmitted to distant places there is loss of energy in the conductors in the form of heat. This is known as transmission loss. In India electricity is produced at 11 kV (11000 V) in power stations. The methods to reduce the heat generated is ٠ 1.Reduce current, 2. Reduce Resistance, 3. Reduce the time taken To reduce the current without change in power is by increasing the Voltage. Activity 13 a) What is the method to reduce the transmission loss? b) Which type of transformer is there in a power station? c) Which type of transformer is there in a sub station? d) Which type of transformer is a distribution transformer? e) How many lines reach the distribution transformer? f) How many lines go out of the distribution transformer? g) What is the potential difference between 2 phase lines? h) What is the potential difference between any one phase line and the neutral line? 24

Samgra Shiksha Kerala	Physics	Class 10
i) What is the potential difference between the earth and the neut	ral line?	
j) If a person standing on the earth touches a phase line, will she ${\mathfrak{g}}$	get an electric shock	c? Why?
k) Which are the lines essential for household electrification?		
Focus Point		
Electric Shock – Precautions and First aid		
Points to Remember		
First aid should be given only after disconnecting the victim from	the electric wire.	
"Saving electricity is equivalent to generating electricity"		
Activity 14		
a) What are the precautions to be taken to avoid electric shock.?		
b) What happens to the viscosity of the blood when the tempe	erature of body dec	creases while a person is
electrocuted .		
c) Briefly explain the first aid given to a person who are electrocu	ıted	
ANSWERS		

NSWERS

Activity 1

b. Electromagnetic Induction

c.Whenever there is a change in magnetic flux linked with a coil changes an emf is induced In the coil . This phenomenon is called electro magnetic induction.

IV)

Diagram	Activity	Observation
	25	

San	ıgra Shiksha Kerala		Physics Class	10
		Magnet is moved in to the solenoid	Galvanometer needle get deflected	
		Magnet is stationary inside the solenoid	No deflection	
		Magnet is moved out of the solenoid	Magnetic needle deflects in the opposite direction.	

Activity 2

i) Electromagnetic Induction.

ii) Induced current.

iii) When ever there is a change in the magnetic flux linked with a coil, an emf is induced in the coil. This phenomenon is Electromagnetic induction.

iv) Increase the number of turns of the coil.

Increase the strength of the magnet.

Increase the movement of magnet or coil.

Activity 3

a) AC Generator

b) <u>Electromagnetic Induction</u>: Whenever there is a change in the magnetic flux linked with a coil, an emf is induced in the coil.

- c) a armature , b. Field magnet n c. Slip rings d. Brushes
- d) Mechanical Energy to Electrical Energy
- e) Filed Magnetic
- f) Armature
- g) alternating current

Activity 4

a) Fig 1 & Fig 3

Activity 7

(i) Bulbs in a, b, c are emitting same light.Glow of d is lesser than a, b, c.

'e' has the least glow.

- (ii) Self induction
- (iii) Correct definition
- (iv) Inductor
- (v) Cannot use in DC circuits.
- (iv) The presence of soft iron core leads to the increase in flux density. So back emf increases, which leads to the decrease in effective voltage.

Activity 8

Physics

a) Mutual induction

b) Give AC instead of DC

c) P – Primary Coil Q – Secondary Coil

Activity 9

Step-up	a, d, e, g
Step-down	b,c, f, h

Activity 10

T₁– Step down transformer

T₂ – Step up transformer

2.5V

3. No change

4. No change

5. The voltage is directly proportional to the number of turns

$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$

6. The primary and secondary power of a transformer will be equal. Therefore the current in the primary of the step up transformer and the secondary of the step down transformer will be higher. So thicker wires will be used to prevent the coil from overheating. Thicker wires have less resistance.

Samgra Shiksha Kerala **Physics** c) Step down transformer

- d) Step down transformer
- 3 lines (11 KV) e)
- f) 4 lines (3 Phase line and 1 neutral line)
- 400 V g)
- 230 V h)
- i) 0 V
- The person will get an electric shock because there is a potential difference(230 V) between phase and j) earth.
- Phase line, Neutral line, and Earth line. k)

Activity 14

a)

• Never handle electric equipments or operate switches when the hands are wet.

- Insert plug pins into socket and withdraw them only after switching off.
- Do not operate devices of high power using ordinary sockets.
- Wear rubber footwear while operating electric devices.
- Do not touch the interior parts of the cable TV adapters. Ensure that there is

an insulated cap for the adapters.

b) As a result of electric shock, the body temperature of the victim decreases,

viscosity of blood increases and clotting of blood occurs.

- c) Raise the temperature of the body by massaging.
- Give artificial respiration.
- Massage the muscles and bring them to the original condition.
- Start first aid for the functioning of the heart (Apply pressure on the chest regularly)
- Take the person to the nearest hospital immediately.

UNIT 4 **REFLECTION OF LIGHT**

FOCUS AREA:

Reflection – Reflection of light

POINTS TO REMEMBER

- Incident ray , reflected ray and normal to the reflecting surface lie in the same plane. -
- → Angle of incidence (i) and angle of reflection (r) are same.

i=r

Activity 1

→ a) Find out the following from the figure.

i) Incident ray ii) Reflected ray iii) Normal

iv) Angle of incidence v) Angle of reflection

b) Explain the phenomena reflection of light.

c) Write down laws of reflection.

FOCUS AREA :

Characteristics of image formed by concave and convex mirrors

POINTS TO REMEMBER:

- → Features of image formed by a concave mirror depends on position of the object.
- → Image formed by a convex mirror is always erect ,diminished and virtual.
- → Convex mirrors form wider field of view.
- → Convex mirror is used as rear view mirror in vehicles.

Activity 2

The position of image and the features of image when an object is placed at different positions in front of a concave mirror is is tabulated. Fill up the blanks suitably.

А	В	В
Object between C and F	a	image beyond C
Object at C	Size of the image is same as that of the object	b
Object beyond C	C	Image between C and F
Object between F and mirror	Image is in the mirror	d

FOCUS AREA :

Mirror equation

POINTS TO REMEMBER: 1/f = 1/v +1/u or f= uv/u+v

Samgra Shiksha Kerala	Physics	Class 10
Activity 3		
The image of a vehicle appear in a rear distance 12 m behind the mirror. The vehicle from the rear view mirror of the (a) Identify which type of mirror? (b) Why do such mirrors are used as th (c) What will be the focal length of the	view mirror of actual distance car is 20 m. ne rear view mir mirror?	the car at a e of the rrors?
FOCUS AREA :		
Magnificaion (m) POINTS TO REMEMBER:		
Magnificaion, m= h _i /h _o or m= -v/u		
Activity 4 An object of height 6cm is placed at a distance of 8cm in front at a distance of 16cm from the mirror.	of a concave mirror.	A real image is formed
a) Find height of the image b) What is the magnification of the image?		
FOCUS AREA : New Cartesian sign convention		
POINTS TO REMEMBER:		
height upwards (Positive) X height downwards (Negative) Mirror	ce towards right (Positive)	→ X [.]

Samgra Shiksha Kerala **Physics** Class 10 Answer key Activity 1 a) i) AO ii) OB iii) ON iv) <AON v) <NOB b) light falling on the surface of an object comes back to the same medium. This is reflection of light. c) Incident ray ,reflected ray and normal to the reflecting surface lie in the same plane. Angle of incidence (i) and angle of reflection (r) are same. I = rActivity 2 a) magnified image b) Image at C c) diminished image d) virtual image Activity 3 a) convex mirror b) Image formed by a convex mirror is always erect ,diminished and virtual.Convex mirrors form wider field of view. Convex mirror is used as rear view mirror in vehicles. c) u = -20m ,v = =12m f = uv/u+v= <u>-20x12</u> -20+12 = -240 -8 = 30 mActivity 4 a) $h_0 = 6cm$ u = -8cm $v = -16 \ cm$ $h_i/h_o = -v/u$ $\underline{h}_i = -(16)$ - 8 6 $h_i = -6 \times 2 = -12 cm$ b) $m = h_i/h_o$ = -12/6 = -2

UNIT 5 REFRACTON OF LIGHT

Focus area

Relation between Speed of light and optical density

Points to Remember

- The speed of light through various media differs.
- As the optical density of a medium increases, the speed of light through it decreases and vice - versa.

Activity 1

Observe the given figure and answer the following questions

Samgra Shiksha Kerala Physics Class 10 Light from a laser torch passes through water in a beaker Image: Class 10 and the passes through water in a beaker Image: Image

Activity 2

Analyse the table and answer the following questions

Medium	Speed of light (m/s)
Vacuum/air	3×10 ⁸ m/s
Water	2.25×10 ⁸ m/s
Glass	2×10 ⁸ m/s (approximately)
Diamond	1.25×10 ⁸ m/s

- a. Which are the medium having highest and lowest velocity of light?
- b. Find the speed of light in water from the table?
- c. Arrange the medium in the descending order of their optical density?
- d. What is meant by optical density?
- e. What is the relation between optical density and velocity of light?

Focus Area

Refraction of light

Points to Remember

When a ray of light entering obliquely from one transparent medium to another, its path undergoes a deviation at the surface of separation. This is refraction.

Activity 3

Observe the given figure

Samgi	ra Shiksha Kerala	Physics	Class 10		
а.	Which of the figures indicates the path of light from air	to water?			
Ь.	Which of the figure indicates the path of light from gla	ss to water?			
c.	In which figures refracted ray move away from the norr	nal?			
d.	Which figure represent the refracted ray deviates toward	ls the normal?			
Focus	Агеа				
Total	Internal Reflection				
Point	s to Remember				
When	a ray of light passes from a medium of higher optical den	sity to a medium of l	ower		
optica	optical density at an angle of incidence greater than the critical angle, the ray is reflected				
back t	back to the same medium without undergoing refraction. This phenomenon is known as				
total i	total internal reflection.				

Activity 5

Match the following

Refraction	Refracted ray grazes	Dioptre
	through the surface of the	
	medium	
Total internal reflection	Velocity of light	Optical density
Power	Virtual image	Endoscope
Critical angle	1/f	Image is not formed on the
		screen
Concave lens	Optical Fibre	Angle of incidence in the
		denser medium
		corrosponding to the angle
		of refraction 90°

Samgra Shiksha Kerala	Physics	Class 10

Focus Area

. Lenses -technical terms - image formation -ray diagrams - characteristics of image.

Points to Remember

- Principal axis : Principal axis is the imaginary line that passes through the optic centre joining the two centres of curvature.
- Principal focus : Light rays incident parallel and close to the principal axis after refraction converges to a point on the principal axis of a convex lens. This point is the principal focus of a convex lens
- The principal focus of a convex lens is real
- The convex lens has two focuses.
- Principal focus of concave lens : Light rays incident parallel and close to the principal axis
- diverge from one another after refraction. These rays appear to originate from a point on the same side. This point is the principal focus of a concave lens.
- The principal focus of a concave lens is virtual.
- The concave lens has two focuses.
- Focal length : Focal length is the distance from the optic centre to the principal focus. This is denoted by the letter f'.

Physics

Class 10

Formation of image using a Convex lens

Position of object		Position of	Nature of image/ size		
		image Real/ virtual	Real/ virtual	Inverted/ erect	Magnified/ diminished/ same size
1.	At infinity	At F	Real	Inverted	Diminished
2.	Beyond 2 F	Between 2F and F	Real	Inverted	Diminished
3.	At 2 F	At 2F	Real	Inverted	Same size
4.	Between 2F and F	Beyond 2 F	Real	Inverted	Magnified
5.	At F	At infinity	Real	Inverted	Very much magnified
6.	Between F and lens	At behind the lens	Virtual	Erect	Magnified

Ray diagram of formation of images by convex lenses

1. Object at infinity

The characteristics of the image

Position of the image : At F

Nature of the image : Real, Inverted

Size of the image : Diminished

2. Object beyond 2F

Physics

Nature of the image : Virtual, Erect Size of the image : Diminished

Activity 6

When an object of height 2cm is placed at a distance 20cm away from a lens, a real image is formed 40 cm away from the lens.

- a. Find the height of the image
- b. Which type of lens is this?
- c. What are the other characteristics of the image

Activity 7

a) Observe the figure and find the magnification of the image.

b) Whether magnification is +ve or –ve?

c) Find the position of the image

d) What are the other properties of the image?

Activity 8

a. Complete the ray diagram related to the image formation

Samgra Shiksha Kerala		Physics	Class 10
a. path of light deviates ,b.a	ir,water , c.Refraction		
d.When a ray of light enteri	ng obliquely from one transpar	ent medium to ano	ther,its path
undergoes deviation from t	he surface of separation. This is	s Refraction.	
Activity 2			
a.Highest velocity of light-a	ir/vaccum Lowest-diamond		
b.2.25x10 ⁸ m/s			
c.diamond,glass,water,air			
d.Ability of a medium to inf	luence the velocity of light		
e.When optical density incr	eases velocity of light decrease	s(inversely propoti	onal)
Activity 3			
a.QR			
b.QR,RS			
c.i - angle of incidence			
r-angle of refraction			
d.The angle between the re	fracted ray and the normal		
Activity 4			
a.fig 5.3(a),fig 5.3(c)			
b.fig 5.3(d)			
c.fig 5.3(b),fig 5.3(d)			
d.fig 5.3(a)			
Activity5			
Refraction	Velocity of light	Optical density	
Total internal reflection	Optical fibre	Endoscope	
Power	1/f	Dioptre	
Critical angle	Refracted ray grazes	Angle of incidenc	e in the
	through the surface of the	denser medium	
	medium	corrosponding to	the angle

Concave lens

Activity 6

Virtual image

of refraction 90°

screen

Image is not formed on the

```
Physics
```

a) u= -20cm

v=+40cm

ho=2cm

Magnification, m=v/u=40/-20= -2

M=hi/ho

-2=hi/2

hi =2*-2= - 4cm

b) Here the magnification is negative and the image is real . So it is a convex lens.

C) Larger than the object (magnified), Inverted, real

Activity 7

a) ho=+2cm hi=+8cm m=hi/ho=+8/+2=+4 b) Magnification ispositive c)m=+4 u=-10 m=v/u +4=v/-10 V=+4*-10=-40cm The image is 40 cm away in front of the lens d) Large than the object, erect, virtual

Activity 8

Physics

 $\frac{1}{v} = \frac{7}{60}$ $v = \frac{60}{7}$ ie v = 8.57 cm

Physics

Class 10

VISION AND THE WORLD OF COLOURS

Focus Area : Dispersion Points to remember:

Dispersion is the phenomenon of splitting up of a composite light into its constituent colours. The regular array of colours formed by dispersion is the visible spectrum. **Activity 1**:

Affix a black paper on the glass cover of a torch.Make a small hole at the centre of the black paper.Arrange a screen, and place a prism between the torch and the screen. Let the beam of white lightfrom the torch fall obliquely on the prism.

a) Which are the colours formed on the

screen?

- b) Aren't these colours the same as the component colours obtained from the sunlight?
- c) Name the phenomenon

d) Which colour deviates the most due to dispersion?

e) Which colour deviates least?

f) What is the relation between deviation and wavelength of colours?

Focus Area

: Recombination of colours

Points to remember:

Any light that is composed of more than one colour is a composite light

Activity 2

The teacher asked to plan an experiment to prove the recombination of colours.

- (a) Summarise the experimental procedure.
- (b) What will be your observations?

Physics

Focus Area

: Formation of rainbow

Points to remember:

Sunlight, when it passes through water droplets, undergoes refraction and internal reflection. The light ray emerging from the water droplets which make the same angle with the line of vision have the same colour. These droplets appear in the form of an arc of a particular colour. Thus there is red colour at the upper edge and violet colour at the lower edge. All the other colours are seen in between, depending on their wavelengths.

Activity 3

Dispersion occur when sunlight passes through the droplets of water.

visible light

(a) Complete the diagram.

- (b) What happens to the sun light, when it passes through water droplets
- (c) Which colour is seen in the outer edge of Rainbow?
- (d) Watching from an aeroplane the Rainbow will seen in ----- shape.
- (e) When the Rainbow is seen in the east, the Sun will be at _____.
- (f) Which colour is seen in the inner edge of Rainbow?

Focus Area

: Persistence of vision

Points to remember:

When an object is viewed by a person, its image remains in the retina of the eye for a time interval of 0.0625s or (1/16)s after seeing it. This phenomenon is called persistence of vision. If more than one scene is viewed within 0.0625s, the effect of all these scenes will be felt by the eye simultaneously.

Activity 4

A glowing agarbathi when rotated fast we feel that there is a continuous glowing circle.

(a) Which peculiarity of eye is the reason behind this?

Samgra Shiksha Kerala Class 10 **Physics** (b) Explain this phenomenon. **Focus Area** : Scattering of light Points to remember: Scattering is the change in direction brought out by the irregular and partial reflection of light when it hits the particles of the medium. Activity 5 Even though light travels in straight lines, we get light in our rooms during day time. What is the reason? Activity 6 The teacher asked to plan an experiment to prove the scattering of light. (a)List the materials needed to perform the test? (b)Summarise the test procedure. Focus Area : Scattering and wavelength Points to remember: Rate of scattering and the size of the particles are interrelated. As the size of the particle increases, the rate of scattering also increases. If the size of the particles is greater than the wavelength of light, then the scattering is same for all colours. Activity 7 Write the component colours in white light in ascending order of scattering rate? Answers

UNIT 6 VISION AND THE WORLD OF COLOUR

Activity 1

- (a) violet, Indigo, Blue, Green, Yellow, Orange, Red
- (b) yes
- (c) dispersion of light
- (d) violet
- (e) Red

Samg	ra Shil	ksha Kerala	Physics	Class 10	
	(f)	When wavelength increases deviation of light de	creases.		
Activ	/ ity 2 (a) P	Pass white light through a prism and obtain the cons	stituent colours on a	screen.	A
prism	n simila	ar to the first is placed in inverted position, adjacen	t to the first.		
	(b) V	When the white light is passed through the first pris	m, it is dispersed in	to sev	ven
	colou	urs. But when the second prism is placed near the	first prism the colou	r of light con	ning
out fr	om the	e second prism is white			
Activ	7 ity 3 a)				
		V R			
(b)	Sunli	ight under goes refraction and internal reflection.			
	(C)	Red			
	(d)	circle			
	(e)	west			
	(f)	violet			
Activ (a) F	ity 4 Persiste (b) V time i persis these vity 5	ence of vision When an object is viewed by a person, its image rel interval of 0.0625 second (1/16 s) after seeing it. T istence of vision. If more than one scene is viewed e scenes will be felt by the eye simultaneously.	mains in the retina c ⁻ his phenomenon is within 0.0625 s, th	of the eye fo called ne effect of	r a all
	5 -				

Samgra Shiksha Kerala	Physics	Class 10
Due to the scattering of light		
Activity 6 (a)Beaker, Water, Torch, Sodium thiosulphate, Hydrod	chloric acid, Screen	
(b)Dissolve sodium thio sulphate in water taken in a b	eaker. Add two dro	ps of hydrochloric
acid to it. Monitor the change in light between the solution a	and the scree	n. From this we can
understand the scattering of light.		

Activity 7

Red, Orange, Yellow, Green, Blue, Indigo ,Violet

UNIT -7

ENERGY MANAGEMENT

Focus Point

Fossil Fuels – Coal, C N G, L N G, L P G

Points to remember

Fossil Fuels

* Fossil fuels are formed by the transformation of plants and animals that went under the earth's crust millions of years ago. The transformation took place in the absence of air under high pressure and high temperature.

* Coal, petroleum and natural gases are fossil fuels.

Coal

* Coal is the most abundant fossil fuel on the earth.

* The main component of coal is carbon. Based on the carbon content, it is classified into four groups as peat, lignite,anthracite and bituminous coal.

* When coal is distilled in the absence of air, the substances obtained are ammonia, coal gas, coal tar and coke.

Petroleum

The products obtained from fractional distillation of petroleum are

* Petrol ,Diesel,Kerosene , Naphtha , Grease

Natural gases (CNG, LNG)

* liquefied natural gas (LNG) and compressed natural gas (CNG) from thenatural gas obtained along with petroleum.

* The main component of all these is methane.

* These are used as fuels in vehicles, industries and thermal power stations.

* The importance of LNG is that natural gas can be liquefied and transported to distant places conveniently. It can again be converted into gaseous form at atmospheric temperature and distributed through pipe lines.

LPG

* The full form of LPG is liquefied petroleum gas.

* This is a colourless, odourless gas obtained through the fractional distillation of petroleum.

Samgra	Shiksha Kerala		Physics	Class 10
* Domest	ic LPG produces an odour sinc	e ethyl mercaptan is added a	s an indicator to	
detect gas	leakage.			
* The ma	in constituent of LPG is butane			
Activity	L			
1. Which	are the products obtained from	fractional distillation of petr	oleum?	
2. Classif	y the following fuels in to solid	, liquid and gas?		
Firewood	, Petrol, naphtha, Ammonia, Ke	erosene, Coke, LNG, Nuclea	r fuel, Biogas	
3. Match	the following.			
	LPG	Methane		
	CNG	Coke		
	COAL	Ethyl Mercaptan		
Focus Po	int			
L P G and	l Safety			
Points to	Remember			
Precautio	ns are to be taken to avoid accie	dents due to LPG leakage		
* Examin	e the rubber tube at regular inte	ervals and ensure that it does	not have a leaka	ge.
* Turn on	the knob of stove only after th	e regulator is turned on.		
* Always	store the LPG cylinder in an	upright position and away	from other coml	bustible and flammable

material.

* Check for gas leaks regularly by applying soap solution on cylinder joints and suraksha pipes

* If you are convinced that there is a gas leak, disconnect electricity from outside the

home (switch off the main switches).

* Switch off the regulator and shift the cylinder to an empty space. Keep the windows and doors open.

* Request help from the Fire Force by calling in the toll free number 108.

* Well trained rescue operators can put out the fire by covering the top end of the cylinder with wet sack to prevent the contact with oxygen.

* If the fire is in flat or the top storey, then one should not try to escape using lifts.

Only staircase should be used.

* Cover the nose and the mouth with soft cloth to avoid the intake of smoke or gases.

Activity 2

1.Never switch on or switch off electricity when there is a leakage of LPG. Why?

2.If there is a leakage of LPG does it rise up or come down in the atmosphere? Why?

3.What precautions are to be taken to avoid accidents due to LPG leakage?

4. If a gas leak is suspected or if the fire spreads on a cylinder, what else could be done?

Focus Point

Green Energy and Brown Energy

Points to Remember

* Green energy is the energy produced from natural sources that does not cause environmental pollution.

* All the energy produced from renewable sources belong to this category.

* The renewable sources like solar energy, wind energy, energy from waves and energy from biomass are considered as green energy.

* This is also referred to as clean energy.

* The energy produced from non renewable sources such as petroleum and coal, and the nuclear energy are named brown energy.

* These are sources which cause environmental problems including global warming.

Activity 3

1. Classify the following into "green energy" and "brown energy"?

Tidal energy, Thermal power plant, Windmill, Hydro-power station

Nuclear power station, Solar power, Diesel engines, Geothermal energy

Focus Point

Energy Crisis – Reasons and Solutions.

Points to Remember

1. Judicious utilisation of energy.

Samgra Shiksha KeralaPhysicsClass 102. Maximum utilisation of solar energy.3. Minimising the wastage of water.4. Making use of public transportation as far as possible.

- 5. Construction and beautifying of houses and roads in a scientific manner.
- 6. Controlling of the street lamps with LDR (Light Dependent Resistor).
- 7. Timely maintenance of machines.
- 8. Limiting the size of newly constructed buildings.
- 9. Ensuring of maximum efficiency of the machines used.

Activity 4

What can be done for reducing energy crisis as far as possible?

ANSWERS

Activity 1

Petrol – Diesel- Kerosene - Naphtha – Fuel oil - Grease – Wax
2.

Solid	Liquid	Gas
Firewood	Naphtha	LNG
Nuclear fuel	petrol	Biogas
Coke	Kerosene	Ammonia

3.

LPG	Ethyl Mercaptan
CNG	Methane
COAL	Coke

Activity 2

1. It is because the fumes of gas are highly flammable and even smallest of sparks can ignite a huge fire.

2. Come down in the atmosphere. LPG is denser than air, so any leakage will sink to the ground and accumulate in low lying areas and may be difficult to disperse.

Samg	ra Shiksha Kerala	Physics	Class 10	
3.				
* Exar	* Examine the rubber tube at regular intervals and ensure that it does not have a			
leakag	ge.			
* Turn	n on the knob of stove only after the regulator is turned on.			
* Alw	vays store the LPG cylinder in an upright position and away	from other combusti	ble and flammable	
materi	ial.			
* Cheo	ck for gas leaks regularly by applying soap solution on cylinde	r joints and suraksha j	pipes	
4.				
* If yo	ou are convinced that there is a gas leak, disconnect electricit	y from outside the ho	ome (switch off the	
main s	switches).			
* Swit	tch off the regulator and shift the cylinder to an empty space. K	Ceep the windows and	doors open.	
* Requ	uest help from the Fire Force by calling in the toll free number	108.		
* Well	l trained rescue operators can put out the fire by covering the to	op end of the		
cylind	ler with wet sack to prevent the contact with oxygen.			
* If th	e fire is in flat or the top storey, then one should not try to esca	pe using lifts.		
Only s	staircase should be used.			
* Cove	er the nose and the mouth with soft cloth to avoid the intake of	smoke or gases.		
Activi	ity 3			
1. <u>Gre</u>	een energy			
	Tidal energy			
	Windmill			
	Hydro-power plant			
	Solar power			
	Geothermal energy			
	Brown energy			
	Thermal power station			
	Nuclear energy			
	Diesel engine			
Activi	ity 4			
(1)	Judicious utilisation of energy.			
	(2) Maximum utilisation of solar energy.			
	(3) Minimising the wastage of water.			
	57			

Samgra Shi	iksha Kerala	Physics	Class 10
(4)	Making use of public transportation as fai	as possible.	
(5)	Construction and beautifying of houses an	nd roads in a scientific manner	r.

GENERAL EDUCATION DEPARTMENT SAMAGRA SHIKSHA, KERALA