SSLC MODEL QUESTION PAPER 2021

 MATHEMATICS

 MATHEMATICS}

THIRUVANANTHAPURAM EDUCATIONAL DISTRICT

Questions 1-5. Choose the correct answer from the bracket. (One mark each)

2
The algebraic form of an arithmetic sequence is $4 \mathrm{n}+3$. What is first term of the sequence?

$$
(4,5,3,7)
$$

If $\angle \mathrm{AOB}=120^{\circ}$. What is the measure of $\angle \mathrm{APB}$?

$$
\left(30^{\circ}, 60^{\circ}, 240^{\circ}, 120^{\circ}\right)
$$

From the above picture, $\mathrm{PA}=9 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm}$, what is the length of PC ?

$$
(3 \mathrm{~cm}, 6 \mathrm{~cm}, 5 \mathrm{~cm}, 10 \mathrm{~cm})
$$

4 A sector of central angle 60° is cut from a circle of radius 10 cm .It is bended to form a cone, what is the slant height of the cone?
($5 \mathrm{~cm}, 7 \mathrm{~cm}, 10 \mathrm{~cm}, 15 \mathrm{~cm}$)
5 Which of the following is a point on the X axis ?

$$
((4,1),(-4,1),(0,4),(4,0))
$$

From questions 6-10, each question carries Two marks.

6 (a) Write the arithmetic sequence with first term 4 and common difference 3.
(b) Write the algebraic form.

If $\angle \mathrm{AOB}=130^{\circ}$, Find
(a) $\angle \mathrm{P}$
(b) $\angle \mathrm{Q}$

8 The weights of 11 children in a school cricket club are 35, 39, 32, 36, 40, 30, 34, 37, 38, 33, 31 (kgs). Find the median weight.

9 Write the polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-9$ as the product of two first degree polynomials
10 (a) Find the midpoint of the line segment joining the points $(-2,6)$ and $(3,1)$.
(b) Find the slope of the line
[From questions 11-20, each question carries Three marks]
11 In the arithmetic sequence $6,11,16 \ldots . .$. fin
(a) Common difference
(b) $7^{\text {th }}$ term
(c) Sum of 15 terms

12 Tenth term of an arithmetic sequence is 15 and fifteenth term is 10.
(a) Find the common difference
(b) Find the First term
(c) What is $25^{\text {th }}$ term

In the figure O is the centre of the circle

(a) What is the measure of $\angle \mathrm{APO}$
(b) What is the measure of $\angle \mathrm{BPO}$
(c) What is the measure of $\angle \mathrm{AOB}$

Base radius and height of a cone are respectively 3 cm and 4 cm .
(a) Find slant height
(b) What is the curved surface area?
(c) What is the volume?

Draw tangent at a point on the circle with radius 3 cm .
Each two digit number is written on a paper slip and these are all put in a box. If a slip is taken from it
(a) What is the probability to get a number with both digits same?
(b) What is the probability that the product of the digits is a perfect square?

ABCD is a parallelogram. $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$
(a) What is the perpendicular distance from C to AB ?
(b) What is the area of parallelogram ABCD ?
(a) Draw tangents from an external point which is at a distance of 7 cm away from the centre of circle with radius 3 cm .
(b) Measure the lengths of tangents?
$(3,3)$
19
Δ_{Y}

What are the coordinates of the other three vertices?
$P(x)=x^{2}-8 x+14$
(a) Find P(2)
(b) Write $\mathrm{P}(\mathrm{x})-\mathrm{P}(2)$ as the product of two first degree polynomials.

[From questions 21-30, each question carries Four marks]

Perimeter of a rectangle is 42 cm and its area $20 \mathrm{~cm}^{2}$.
(a) Find the sum of length and breadth .
(b) Form a second degree equation connecting length breadth and area.
(c) Find the length and breadth of rectangle .
(a) What is the sum of first 20 natural numbers
(b) Find the sum of first 20 terms of the sequence $5,10,15, \ldots .$.
(c) If 3 is added to each term of the sequence write its algebraic form.
(d) Find the sum of first 20 terms of the new sequence.
' O ' is the centre of the circle. $\angle \mathrm{D}=80^{\circ}$ find the following

(a) $\angle \mathrm{E}$
(b) $\angle \mathrm{ABC}$
(c) $\angle \mathrm{AFB}$
(d) $\angle \mathrm{AOB}$

In the figure, the sides of the large triangle are tangents of the circumcircle of smaller triangle through its vertices. Find
(a) $\angle \mathrm{A}$
(b) $\angle \mathrm{RPQ}$
(c) $\angle \mathrm{PQR}$
(d) $\angle \mathrm{PRQ}$

The perimeter of the base of a square pyramid is 96 cm and its height is 16 cm .
(a) What is the length of a base edge?
(b) What is the slant height?
(c) Find the lateral surface area?

27 Draw a rectangle of sides 4 cm and 3 cm .Draw a square having area equal to the area of the rectangle.

PA and PB are two tangents of circle with centre ' O ' Radius of the circle is $5 \mathrm{~cm}, \mathrm{PO}=13 \mathrm{~cm}$,
(a) Find the length of PA
(b) Find the length of PB
(c) Find the Area of $\triangle \mathrm{PAO}$
(d) Find the Area of quadrilateral PAOB

In the figure $\angle \mathrm{B}=45^{\circ} \angle \mathrm{C}=30^{\circ} \mathrm{BD}=2 \mathrm{~cm}$
(a) Find the length of AD
(b) Find the length of CD
(c) Find the area of $\Delta \mathrm{ABC}$

In the figure the incircle of $\triangle A B C$ touches the sides at the points P, Q, R.
$\mathrm{BP}=2 \mathrm{~cm}, \mathrm{CQ}=4 \mathrm{~cm}, \mathrm{AR}=6 \mathrm{~cm}$ then
(a) Find AP , BQ , CR
(b) Find the length of the sides of $\triangle \mathrm{ABC}$
(c) Find the radius of the circle
(d) Find the area of $\triangle A B C$

[From questions 31-45, each question carries Five marks]

The sum of first and $21^{\text {st }}$ terms of an arithmetic sequence is 140 .
(a) Find the sum of $6^{\text {th }}$ term and $16^{\text {th }}$ term.
(b) What is the $11^{\text {th }}$ term.
(c) Find the sum of first 21 terms
(d) Find the sum of first 11 terms of the sequence $20,25,30, \ldots$.
32. ABCD is a cyclic quadrilateral and $\angle \mathrm{CAD}=30^{\circ}, \angle \mathrm{DBA}=50^{\circ}, \angle \mathrm{BDC}=40^{\circ}$. Find the measures of all angles of the quadrilateral and angle between the diagonals.

33 A box contains 6 red beads and 5 white beads. Another box contains 8 red beads and 4 white beads. If one bead is taken from each box, then
(a) What is the number of possible pairs?
(b) What is the probability of both beads being red ?
(c) What is the probability that both beads are white?
(d) What is the probability of getting at least one red bead ?

34 Draw a triangle of circumradius 2.5 cm and two of the angles 30° and 70°.
35 The sides of a rectangle ABCD are parellel to axes. If $\mathrm{A}(2,3)$ and $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}$ Find
(a) The coordinates of the vertices B , C, D
(b) Length of the diagonals

36 The base perimeter of a cone is $20 \pi \mathrm{~cm}$ and slant height is 18 cm . It is made by rolling a sector sheet.
(a) What is the radius of the sector?
(b) What is the radius of the cone?
(c) What is the central angle of the sector ?
(d)Find the curved surface area of the cone ?

37 Draw a circle of radius 3 cm . Draw a triangle of angles $60^{\circ}, 70^{\circ}$ with all its sides touching the circle

38 Sum of the first 4 terms of an arithmetic sequence is 72 . Sum of the first 9 terms is also 72 .
(a) What is the $5^{\text {th }}$ term of the sequence?
(b) Find the sum of the first 5 terms
(c) Write the sequence.

39 A boy standing on the bank of a river sees the top of a tree on the other bank at an angle of elevation of 60°. Stepping 20 m back he sees the top at an angle of elevation of 30°.
Draw a rough figure and calculate the height of the tree and width of the river.
(a) What is the radius of the largest sphere that can be carved from a cube of edge 12 cm ?
(b) Find the surface area and volume of the sphere.
(c) What is the volume of the cone of maximum size that can be carved
from a cube of edge 12 cm ?
41 (a) Write the sequence which leaves remainder 2 when dividing the numbers in between 200 and 500 by 4 .
(b) Find the first term
(c) Find the last term
(d) Find the sum of all terms of the sequence

42 A circle is drawn with $(5,3)$ as centre. $(5,6)$ is a point on the circle
(a) What is the radius of the circle?
(b) Write the equation of the circle
(c) What is the distance from the centre of the circle to the x - axis?
(d) What is the length of the tangents from the origin to the circle?
$43 \quad \mathrm{P}(2,-1), \mathrm{Q}(3,4), \mathrm{R}(-2,3)$ and $\mathrm{S}(-3,-2)$ are the vertices of a quadrilateral.
(a) Find the lengths of the sides of the quadrilateral.
(b) Find the length of its diagonals.
(c) Suggest a suitable name for the quadrilateral.
(d) Calculate the area of the quadrilateral.

44 Longest side of a rectangle is 8 cm more than the shorter side. Area is $180 \mathrm{~cm}^{2}$.
Take the shorter side as ' x '
(a) Write the longest side in terms of x
(b) Write the algebraic equation involving the sides and area
(c) Find the sides of the rectangle

45 The table given below shows the number of children in a class arranged according to their heights.

Height (Centimetres)	Number of children
$120-130$	7
$130-140$	9
$140-150$	10
$150-160$	10
$160-170$	9

(a) The mark of the student at what position is taken as the median.
(b) Calculate the median mark

