

CHEMISTRY

(Support Material for Teaching & Learning)

CLASS X

District Institute of Education and Training (DIET)

Thiruvananthapuram

Vidyajyothi

Chemistry

(Support Material for Teaching & Learning)

First Edition

September 2018

Second Edition

November 2019

Layout & Cover Design

Kallingal Graphics, Attingal

Concepts & Conceptualisation

District Panchayath, Thiruvananthapuram

Administrative Charge

C.Manojkumar, Deputy Director of Education,

Thiruvananthapuram

Academic Charge

T.V.Gopakumar

(Principal, DIET Thiruvananthapuram)

Coordinator

Dr.V.Sulabha, Senior Lecturer, DIET

Subject Charge

Dr.K.Geethalakshmi, Senior Lecturer, DIET

Thiruvananthapuram

Printing

Govt. Press, Thiruvananthapuram

Dear students

Message

Kerala has made many strides in the field of education. The foundation of our success in this field is that we are able to attain academic excellence along with

school excellence. Local authorities and people's committees are very supportive for the development of the school. Meaningful interventions by the Kerala Government and the Department of Public Instruction have become critical in this field. The role of teachers in organizing activities according to new perspectives on learning is not a trivial one. The use of ICT has enabled the collection and dissemination of information and thus facilitated learning. All of you are preparing for a very crucial exam. Systematic study is required to approach the exam with confidence and achieve high success. Everyone is here to help you. Vidyajyothi, the study materials prepared by the District Panchayat, Thiruvananthapuram and DIET Thiruvananthapuram will no doubt be an effective tool to ensure your greater success. An updated book which includes the revised lessons is now in your hands. Make use of it, the maximum. Wishing you all the best.

With love

V.K.Madhu

President, District Panchayath, Thiruvananthapuram

Dear children

The report by NITI Aayog, which states that Kerala is the number one in Education in India is a source of great excitement for the education sector. The perspectives and activities based on secular democratic principles helped us achieve this aim. The General Education Rejuvenation Mission is another exemplary Kerala model. Many of the initiatives proposed by the new National Education Policy under the leadership of Dr. Kasturirangan have been implemented in Kerala. The fact that Kerala is on a par with the educational standard of many developed countries is a visible manifestation of the will power of the Kerala community. You have made many strides in education by self learning, following the guidelines suggested by your teachers who are research oriented in their approach. Now it's time for you to prepare for the public examination. You need not be afraid of exams. Consider your exam as an opportunity to apply the knowledge and skills you have acquired in the classrooms. Remember to take necessary preparations to face the exam well. The Vidyajyothi study materials prepared by the District Panchayat Thiruvananthapuram and DIET Thiruvananthapuram serves as a real guide for you. Make use of the study materials to the extent possible. Wish you all the best.

Wishing you all success

C. Manojkumar

Deputy Director of Education, Thiruvananthapuram **T.V.Gopakumar**Principal, DIET
Thiruvananthapuram

Members participated in the workshop

1. Unmesh .B

Govt.H.S.S.Kilimanoor

Binu Jackson
 St. Vincents H.S. Kaniyapuram

3. **Dr.L.Divya**Govt.H.S.S. Thonnakkal

4. **B.Premachandran Nair (Rtd)**Govt.H.S.S.Koduvazhanoor

Pushpa.N
 Govt. Girls H.S.S, Attingal

6. **Baiju.B** Govt.H.S.Avanavanchery

7. **Rakhi Radhakrishnan** R.R.V.B.H.S.S. Kilimanoor

8. **Sajikumar.K.G**K.T.G.V.H.S.S. for girls Manacaud

9. **Alotius (Rtd)**St.Josephs H.S.S. Thiruvananthapuram

Aneeshkumar.M.A
 G.H.S.S. Bharathanoor

11. **Sanosh.V.P** G.H.S.S. Bharathanoor

12. **Reeja.M (Lecturer)**DIET Thiruvananthapuram

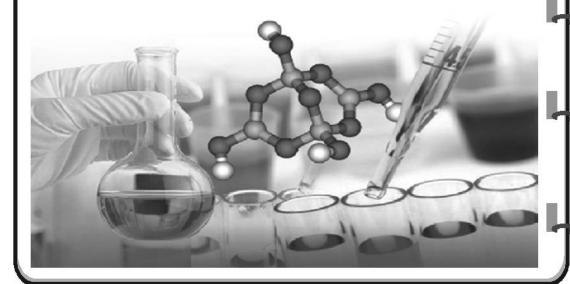
13. **Syamakumari V.S (Sr. Lecturer)**DIET Thiruvananthapuram

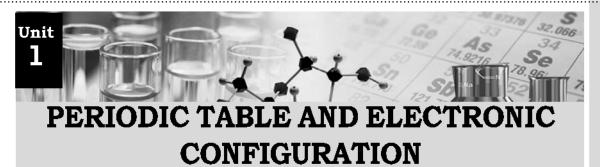
14. **Dr.Sheejakumari.T.R (Sr. Lecturer)**DIET Thiruvananthapuram

PREFACE

Dear friends

All the progress in the field of education in Kerala is the result of effective changes in the curriculum and activities and approaches undertaken and adopted in accordance with the ongoing changes in our modern world. Examples of these include the idea of organizing learning activities considering each child as a single unit, and awareness that there is always a social environment for learning. Similarly, Kerala has adopted a new humanitarian approach towards culture. The idea to value the cultural background of each student in the class and to provide a perspective that culture of each individual is lofty. These are assessed as stepping stones to development. So, we have taken the right and integrated approach encompassing the cultural diversity of each individual. There have been continuous effort in this sector to dismantle traditional notions of education and create a genuinely civic-minded generation. The District Panchayat, Thiruvananthapuram has implemented various exemplary models which are helpful for achieving this aim. The most important among these is the Vidyajyothi learning materials, prepared for six subjects, which are intended to increase the pass percentage of students in class 10 and help them to face the exams with more confidence. A lot of hard work is behind this venture. We express our sincere gratitude to the Honourable District Panchayat President V.K. Madhu, District Panchayat members, District Panchayat Secretary, Standing Committee Officers for their invaluable suggestions. We also thank the Principal, DIET Thiruvananthapuram, Faculty Members, Deputy Director of Education, Headmasters, Teachers, Teacher Organizations and PTA / SMC members for their wholehearted cooperation.

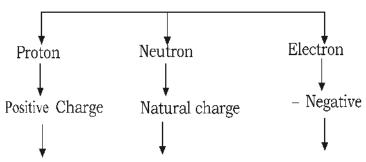

With love


V. Renjith

Standing Committee Chairman – Health and Education, District Panchayath, Thiruvananthapuram

CONTENTS

1.	Periodic Table and Electronic Configuration 7
2.	Gas Laws and Mole Concept 20
3.	Reactivity Series and Electro Chemistry 36
4.	Production of Metals 50
5.	Compounds of Non - Metals62
6.	Nomenclature of Organic Compounds and Isomerism
7.	Chemical Reactions of Organic Compounds 99
	Question for Evaluation 114



The classification of elements by Antoine Lavoisier to Henry Mosely is one of the milestones in the history of chemistry. In this chapter, we are analysing the arrangement of electrons in an atom of different elements.

Main concept

Fundamental particles of an atom

Placed in the nucleus Placed in the nucleus

Revolving around the nucleus in shells.

Shells Sub shells

No.of electrons in sub shells.

Total number of electrons in the shell.

$$2 (L)$$

$$2 (L)$$

$$3 (M)$$

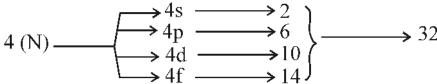
$$4 (M)$$

$$4 (M)$$

$$5 (M)$$

$$5 (M)$$

$$5 (M)$$


$$7 (M)$$

$$8 (M)$$

$$8 (M)$$

$$9 ($$

VIDYA JYOTHI Class 10 ▶

⇒ Filling up of electrons in the sub shells is based on the increasing order of their energies.

The arrangement of electrons in the increasing order of their energies in sub shells are

Activity 1

Fill in the blanks.

Shell	1(K)	2 (L)	3 (M)	4 (N)
Subshell	1s	2s,	, 3p,	4s,, 4d,

Activity 2

Complete the table

Shell	1(K)	2 ((L)	3(M)		4	(N)	l	
Subshell	1s	2s	2p	-	3p	_		4p	_	_
Maximum number of electrons in each subshell	2	2		2	••••	10		6	•••	
Maximum number of electrons in each shell	2	8	3		18			3	32	

Complete the following table by finding the total number of electrons present in the given elements atoms and then write the subshell electronic configuration. (The symbols are not real)

Element	Number of electrons	Subshell electronic configuration
₇ A	7	$1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^3$
₁₁ В		
21 C		
₂₇ D		
₂₀ E		

While writing the subshell electronic configuration of elements with higher atomic numbers, the symbol of the noble gas preceding that element may be shown with in the square brackets followed by the electronic configuration of the remaining subshells.

Example: While writing subshell electronic configuration

upto 2p6- use [Ne]

upto 3p⁶ - use [Ar]

upto 4p6- use [Kr]

Activity 4

Fill up suitably

Element	Sub shell electronic	Subshell electronic
	configuration	configuration using the
		symbol of preceding noble gas
21Se	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ²	$[\Lambda r] 3d^1 4s^2$
₁₂ Mg		[] 3s ²
X		$[Ar] 3d^3 4s^2$
27 Y		
15.7		

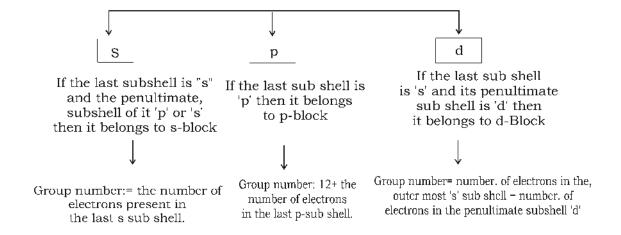
d-sub shell can accommodate a maximum of 10 electrons. The completely filled configuration (d¹º) or the half filled configuration (d⁵) of this the sub shell is more stable than partially filled d subshell.

Activity 5

The subshell electronic configuration of an element X is.

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s^2$$

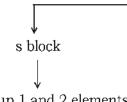
- a) What is the atomic number of this element?
- b) Find the number of electrons present in this element?
- c) Is the given electronic configuration of X correct? If not, correct it..
- d) Write the electronic configuration of element having atomic number 29?


How to find Period, Block and Group of an element, if its subshell electronic configuration is given?

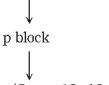
The highest shell number in the sub shell electronic configuration gives the period number.

Example : $1s^2 2s^2 2p^6 3s^1$

Period = 3


To find the Block and Group number Subshell electronic configuration of an element

Complete the table


Elements	Sub Shell Electronic Configuration	Period	Block	Group
17A	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	3	p	5+12= 17
₁₁ B	$1s^2 2s^2 2p^6 3s^1$	3	s	1
₂₂ C	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²	4	d	2+2 = 4
IOD				
27 H				
₂₀ F				

Classification of elements based on their blocks

(Group 1 and 2 elements)

- Less ionisation energy and low electro negativity.
- Oxides and hydroxides are basic in nature
- Exhibit +1, or +2 oxidation state.
- Form ionic compounds
- · All are metals

(Group 13 -18elements)

- •Elements found in solid, liquid and gaseous states.
- Metals, non metals and metalloids are included
- Elements show both positive and negative oxidation states.

(Group 3 to 12 elements)

- Solid metals except Hg
- Showing variable oxidation states.
- Form coloured compounds
- Exhibit chemical similarity along the period and down the group.

Match the following

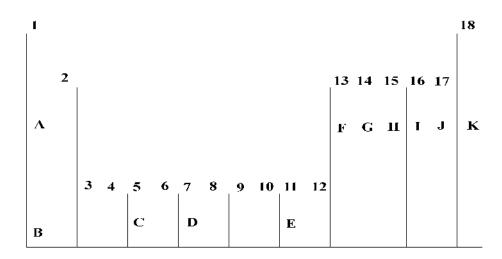
A	В	С
s- block	Most of them are radio	Include metalloides
elements	active	
p- block	Alkali metals	Used as catalyst in petroleum
elements		industry
d- block	Include elements in solids,	Form ionic compounds
elements	liquid and gaseous states	
f-block	From coloured compounds	Show similarity both in
elements		period and group

Activity 8

Atomic number of Mn is 25. Its electronic configuration is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$. Based on this, complete the following table.

,,	,	7 · · · · · · · · · · · · · · · · · · ·
Compound	Oxidation state	Electronic configuration of Manganese ion
MnCl ₂	+2	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵
MnO_2		
$\mathrm{Mn}_{_{2}}\mathrm{O}_{_{7}}$		
$\operatorname{Mn_2} \operatorname{O_3}$		

Activity 9


Element X shows an oxidation state of +3. The electronic configuration of X^{3+} is [Ar] $3d^7$. [Valency of chlorine is 1]

- a) Find the atomic number of X?
- b) Write the subshell electronic configuration of element X?
- c) Write the chemical formula of compound forming between X and Cl.

Activity 10

Symbols of two elements and their atomic numbers are given

- a) Write the electronic configuration of these elements
- b) Find the oxidation number of sodium and oxygen
- c) Write the chemical formula of the compounds formed between sodium oxygen

- a) Which elements show +1 oxidation state?
- b) Which is the element containing 4 electrons in the outermost shell?
- c) Which element has the highest ionisation energy?
- d) Which element shows -1 oxidation state?
- e) Which is the most highest reactive non metal?

ANSWER KEY

1.	Shell	1 (K)	2 (L)	3 (M)	4 (N)
	Sub shell	1S	2s, 2p	3s, 3p, 3d	4s, 4p, 4d, 4f

2.	Shell	1 (K)	2	2 (L)		2 (L) 3 (M))		4	(N)	
	Sub Shell	1s	2s	2p	3s	3р	3d	4s	4p	4d	4f	
	Maximum number	2	2	6	2	6	10	2	6	10	14	
		2	8	3	1	.8			3:	2		

3.	Element electrons	Number of Configuarion	Subshell Electronic
	$_{7}A$	7	$1s^2 2s^2 2p^3$
	11B	11	$1s^2 2s^2 2p^6 3s^1$
	₂₁ C	21	$1s^2 - 2s^2 - 2p^6 - 3s^2 - 3p^6 - 3d^1 - 3s^2$
	$_{27}\mathrm{D}$	27	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$
	₂₀ E	20	$1s^2 - 2s^2 - 2p^6 - 3s^2 - 3p^6 - 4s^2$

4.		Subshell Electronic Configuration	Subshell Electronic Confriguration using the symbol noble gas
	21 ^{SC}	$1s^2 2s^2 2p^6 2p^6 3s^2 3p^6 3d^1 4s^2$	(Ar) $3d^1 4s^2$
	12^{Mg}	$1s^2 2s^2 2p^6 3s^2$	(Ne) 3s ²
	23X	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$	(Ar) 3d ³ 4s ²
	27 Y	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	(Ar) 3d ⁷ 4s ²
	15 Z	$1s^2 2s^2 2p^6 3s^2 sp^3$	(Ne) $3s^2 3p^3$

- 5. a) 24
 - b) 24
 - c) No, $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^5\ 4s^1$ or (Ar) $3d^5\ 4s^1$
 - d) $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^1$ or (Ar) $3d^{10} \ 4s^1$

6.	Element	Subshell Electronic Configuration	Period	Block	Group
	17 ^A	$1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^5$	3	р	5 + 12 = 17
	11 ^B	$1s^2 2s^2 2p^6 3s^1$	3	s	1
	22 ^c	$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^2 \ 4s^2$	4	d	2+2 = 4
	10^{D}	$1s^2 2s^2 2p^6$	2	р	6+12 = 18
	27 ^E	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$	4	d	2+7=9
	20 ^F	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$	4	s	2

<i>/</i> .		
s - Block elements	Alkalimetalas	Form ionic compounds
p- Block elements	Included elements insolid liquid and gaseous state	Include metalloids
d-Block elements	From coloured compounds	Shows similarity both in period and groups
f - Block elements	Most of them are radio active elements	Used as catalysts in petroleum petroleum industry

8.	Compound Oxidation state		Electronic configuration of Managemention		
	Mn Cl ₂	+2	$1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^63\mathrm{s}^23\mathrm{p}^63\mathrm{d}^5$		
	Mn ${\rm O_2}$	+4	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$		
	$\mathrm{Mn}_2~\mathrm{O}_7$	+7	$1s^2 2s^2 2p^6 3s^2 3p^6$		
	$\mathrm{Mn}_2~\mathrm{O}_3$	+3	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$		

- 9. a) 28
 - b) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$
 - c) $X C l_3$ (If X is in +3 oxidation state)
- 10. a) Na 2, 8, $1/1s^2 2s^2 2p^6 3s^1$ O 2, $6/1s^2 2s^2 2p^6$

b) Na = +1

O = -2

- c) Na₂O
- 11. a) A and B
 - b) G
 - c) K
 - d) J
 - e)

UNIT TEST


Score: 20 Time: 40 min

Answer any four from questions 1 to 6.

- 1. Which among the following sub shells has the highest energy? 2s, 4s, 3d
- 2. Find the maximum number of electrons that can be accommodated in 3p subshell?
- 3. How many subshells are there in the 4th shell?
- 4. Find the oxidation state of Fe in FeCl₃?
- 5. Which one is impossible in the sub-shell 2s, 2d, 3d and 5s.
- 6. In which block most of the elements showing positive oxidation state and negative oxidation state are included? $(1 \times 4 = 4)$

Answer any five from questions 7 to 13

- 7. Bohr model of an atom of element 'A' is given.
 - a. What is the atomic number of this element 'A'.
 - b. Write the subshell electronic configuration of A.

- $B = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^4 \ 4s^2.$
- a. Find the atomic number of B.
- b. Is the given electronic configuration of B correct? If not, correct it and give the reason.
- 9. d-block elements show horizontal and vertical similarity in periods and groups. Why?
- 10. Write the electronic configuration of elements having atomic number 17 and 21. Then find the period, group and block of these elements?
- 11. What are the possible sub shells in N shell? Write the maximum number of electrons that can be accommodated in each sub shell?
- 12. 'X' is an element showing +2 oxidation state. The electronic configuration of X^{2+} is $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $3d^2$. Then
 - a. Write the atomic number of X?
 - b. Write its electronic configuration?
- 13. Write the subshell electronic configuration of element having atomic number 23, using the symbol of preceding noble gas (2 ×5 = 10)

Answer any two from the questions 14 to 16.

14. Analyse the following table and answer the questions given below.

_ 1	_																18
	2	_										13	14	15	16	17	
Е																F	
		3	4	5	6	7	8	9	10	11	12						G
A	В							D		С						Н	

- a. Find elements having one electron in 4s sub shell?
- b. Find the s-block element having the smallest atom size?
- c. Which are the elements that form coloured compounds?
- d. In which family the element is G included?
- 15. Match the following.

s-block Elements	Mostly radio active elements	Included in the 6 th period
p-block elements	Exhibit only +1 or +2 oxidation state.	Included in the 7 th period
d block elements	last electron fills in 4f subshell	Exhibit variable oxidation state
Lanthanoids	Include elements showing +ve oxidation state or -ve oxidation state	Form Ionic compounds
Actinoids	Form coloured compounds.	Included metalloids

16. Complete the table.

Elements	Sub shell electronic configuration	Sub shell electronic configuration using the name of the Preceeding noble gas.
₂₁ Se	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$	$[\Lambda r] 3d^1 4s^2$
₁₂ Mg		[] 3s ²
X		[Ar] 3d ³ 4s ²
27 Y		
I _S Z		

ANSWER KEY

- 1. 3d
- 2. 6
- 3. 4
- 4. +3
- 5. 2d
- 6. p
- 7. a) 13
 - b) $1s^2 2s^2 2p^6 3s^2 3p^1$
- 8. a) 24
 - b) No, $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ (Half filled configuration is more stable)
- 9. In 'd' block elements, the outer most subshell electronic configuration is the same in a roup a group and also along a period. Hence they show similary in groups and in periods.
- 10. Atonic number = 17

Subshell Electronic Configuration

$$= 1s^2 2s^2 2p^6 3s^2 3p^5$$

Period = 3

Block = P

Group = 17

Atonic number = 21

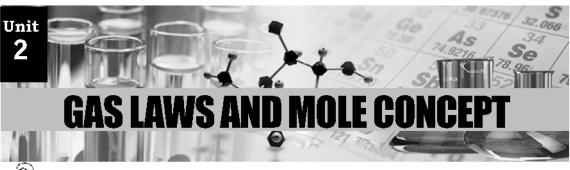
Subshell Electronic Configuration

$$= 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$$

Peiod = 4

Block = d

Group = 3


11. 4s, 4p, 4d, 4f

$$4s = 2$$
, $4p = 6$, $4d = 10$, $4f = 14$

- 12. a) 22
 - b) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$
- 13. (Ar) $sd^3 4s^2$
- 14. a) A, C
 - b) E
 - c) D, C
 - d) Noble gas (Inert gas)

15.	s - Block elements	Exhibit only + 1 or +2 oxidation state	Form ionic compounds	
	p - block elements	Include elements showing positive or negative oxidation state	Include Metalloids	
	d- Block elements	Form coloured compounds	Exhibits variable oxidation state	
	Lanthanoids	Last electron fills in 4 f subshell	Included in the 6 th period	
	Actinoids	Mostly radio active elements	Included in 7 th period	

16.	Element	Subshell Electronic Configuration	Subshell Electronic configuration using the name of the prceeding noble gas
	₂₁ Sc	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$	(Ar) 3d ¹ 4s ²
	$_{_{12}}$ Mg	$1s^2 2s^2 2p^6 3s^2$	(Ne) 3s ²
	₂₃ X	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$	(Ar) 3d ³ 4s ²
	27 Y	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$	(Ar) $3d^7 4s^2$
	15 Z	$1s^2 2s^2 2p^6 3s^2 sp^3$	(Ne) $3s^2 3p^3$

At a Glance

- Each gas contains numerous minute molecules.
- When compared to the total volume of a gas the real volume of molecules is very less.
- ◆ The molecules of a gas are in a state of rapid motion in all directions.
- ◆ As a result of the random motion of the gas molecules, they collide with each other and also collide with the walls of the container in which it is kept. This collision with the walls account for the pressure of a gas.
- ◆ As the collision of molecules perfectly elastic in nature, there is no loss of energy.
- ◆ There is no attraction between the gas molecules and with the walls of the container.

Activity 1

If a gas which is kept in a cylinder having a volume of 1 litre, is completely transferred to another 5 litre cylinder, what will be its volume?

(5 litres, 10 litres, Volume does not change)

Actvity 2

When gases are heated, the temperature and kinetic energy of the molecules change. Select the most suitable alternative from the following to justify the statement.

- ◆ Temperature decreases, kinetic energy increases
- ◆ Temperature increases , kinetic energy decreases
- ◆ Temperature and kinetic energy increase
- Temperature and kinetic energy decrease

Observe the figure. The size of air bubbles rising from the bottom of an aquarium increases. Give reason.

Boyle's law states that at a constant temperature, volume of a definite mass of gas is inversely proportional to its pressure. If P is the pressure and V the volume, then $P \times V$ is a constant.

Activity 4

Analyse the data given below. Temperature and number of molecules are same.

Pressure (P)	Volume (V)		
1 atm	100 L		
4 atm	25 L		
5 atm	20 L		
10 atm	10 L		

- (a) Find $P \times V$
- (b) Which gas law is related to this?
- (c) What will the volume of the gas if the pressure is changed to 2 atm under the same conditions?

Activity 5

The table given below shows relation between volume and temperature of a fixed mass of a gas. (Pressure is kept constant)

Volume V	Temperature T (In Kelvin scale)
900 mL	300K
960 mL	320 K
819 mL	273 K

- (a) Find V/T
- (b) Which gas law is related to this?
- (c) What will the volume of the gas if the temperature is changed to VIDYA JYOTHI Class 10 M

310 K under the same conditions?

Charle's law states that At constant pressure, the volume of a definite mass of a gas isdirectly proportional to the temperature in Kelvin Scale. If V is volume and T the temperature, Then V/T will be a constant.

Activity 6

Analyse the situations given below. Which gas law is related to each situation?

- (a) When a balloon is inflated ,its volume increases (temperature and pressure are constant)
- (b) If an inflated balloon is kept in sunlight, it will burst.(pressure is constant)

Activity 7

The properties of certain gases which are kept under same temperature and pressure are given below.

Gas	Volume	Number of molecules		
Nitrogen	20 L	Х		
Oxygen	40 L			
Ammonia	10 L	***************************************		
Carbon dioxide		4 x		

- (a) Complete the table
- (b) Identify the gas law which agrees with the data.

Avagadro's Law

At constant temperature and pressure, the volume of a gas is directly proportional to the number of molecules.

MOLE CONCEPT

Activity 8

Complete the following table

Element	Atomic Mass	Given mass	Number of Atoms
Hydrogen	1	1g	6.022×10^{23}
Carbon	(a)	12g	6.022×10^{23}
Oxygen	14	14g	(b)
Nitrogen	16	16g	6.022 × 10 ²³
Sodium	23	(c)	6.022×10^{23}

The mass of an element in grams equal to its atomic mass is called 1 Gram Atomic Mass(1 GAM) of the element. This may also be shortened as 1 Gram Atom.

One gram atomic mass (1 GAM) of any element contains 6.022 $\times 10^{23}$ atoms.This number is known as Avagadro number. This is indicated as $N_{_{\rm A}}$.

Activity 9

Complete the following table

_		_		
Element	Atomic	Given	Number of	Number of Atoms
	Mass (g)	Mass	GAM	
Hydrogen	1	*********	1	
Hydrogen	1	2g		$2 \times 6.022 \times 10^{23}$
Carbon	12		1	6.022×10^{23}
Carbon	12		2	$2 \times 6.022 \times 10^{23}$
Nitrogen	14	14 g	1	6.022×10^{23}
Nitrogen	14	14 g		
Oxygen	16	16 g	1	6.022×10^{23}
Oxygen	16	80 g		
Sodium	23			6.022×10^{23}
Sodium	23		10	
				I

Number of Gram Atomic Mass = $\frac{\text{Given Mass in grams}}{\text{GAM of element}}$

Activity 10

How many GAM is present in the following

- (a) 70 g of Nitrogen
- (b) 160 g of Oxygen

Hint

Number of Atoms = Number of GAM \times 6.022 \times 10²³

Activity 11

Complete the table given below.

Element	Atomic Mass (g)	Given Mass (g)	Number of GAM	Number of Atoms
Hydrogen	1	4	a	b
Carbon	12	c	5	d
Nitrogen	14	42	e	ff
Oxygen	16		h	$5 \times 6.022 \times 10^{23}$

One mole of atoms One mole of atoms = 6.022×1023 atoms = 1GAM

Activity 12

Complete the table given below.

Element	Atomic Mass	Given Mass	Number of Atoms	Number of Mole Atoms
Hydrogen	1	1g	6.022×10^{23}	1
Carbon	12	12g	6.022×10^{23}	1
Nitrogen	14	14g	6.022×10^{23}	
Oxygen	16	16g	6.022 × 10 ²³	1
Sodium	23	23g	6.022 × 10 ²³	
Hydrogen	1	2g	6.022 × 10 ²³	2
Carbon	12	36g	6.022 ×10 ²³	3
Nitrogen	14	70g	6.022 × 10 ²³	5
Oxygen	16	160g		
Sodium	23	11.5g		0.5

Molecular Mass and Gram Molecular Mass

Activity 13

The atomic masses of certain elements are given below.

$$(H=1, C=12, N=14, O=16, Na=23, S=32)$$

Find the Molecular Mass and GMM of the following

- 1) H_2 2) O_2 3) N_2 4) H_2O 5) NH_3

- 6) CO₂ 7) NaOH 8) C₆ H₁₂O₆ 9) Na₂ CO₃ 10) H₂ SO₄

Number of Molecules

Activity 14

Fill in the blanks of the following table.

Element / Compound	Molecular Mass	Mass in grams	GMM	Number of molecules
Hydrogen (H ₂)	2	2 g	1	$\begin{array}{c} 6.022\times10^{23}~\mathrm{H_2} \\ \mathrm{molecules} \end{array}$
Oxygen(O ₂)	32	32 g	1	$\begin{array}{c} 6.022\times10^{23}\mathrm{O}_{2}\\ \mathrm{molecules} \end{array}$
Nitrogen(N ₂)	28	28g		$\begin{array}{c} 6.022\times10^{23}\;\mathrm{N_2}\\ \mathrm{molecules} \end{array}$
Water(H ₂ O)	18	18g	1	6.022×10^{23} H_2O molecules
Ammonia(NH ₃)	17	17g	1	
Carbon dioxide (CO ₂)	44	44g		

The amount of a substance in grams equal to its molecular mass is called One Gram Molecular Mass(1 GMM)

One gram molecular mass of any substance contains Avogadro number of molecules.

Activity 15

One GMM Nitrogen is 28 g Nitrogen.

- (a) How many GMM are there in 56 g Nitrogen?
- (b) How many molecules are present in it?

Number of Gram Molecular Mass =
$$\frac{\text{Mass given in grams}}{\text{Gram Molecular Mass (GMM)}}$$

Activity 16

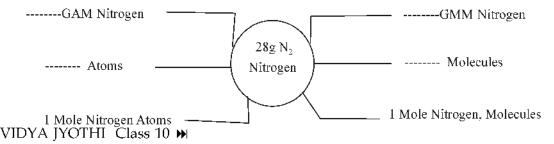
Calculate the number of GMM and number of molecules in each of the following samples

- (a) 170 g of Ammonia (Molecular mass = 17)
- (b) 200 g of Sodium hydroxide (Molecular mass = 40)

Hint: Number of Molecules = Number of GMM \times 6.022 \times 10²³

6.022 ×10²³ molecules are called one mole molecule.1 GMM = 1 VIDYA JYOTHI Class 10 ▶

Mole = 6.022×10^{23} molecules.


Activity 17

Complete the following table

Element/ Compound	Molecular Mass	Given Mass	GMM	Number of molecules	Number of molecules
Hydrogen	2	2 g	1	6.022 × 10 ²³	1
(H ₂)				H ₂ molecules	
Oxygen(O ₂)	32	32 g	1	6.022 × 10 ²³	1
				O ₂ molecules	
Nitrogen(N ₂)	28	28g		6.022 × 10 ²³	
				N ₂ molecules	
Water(H ₂ O)	18	18g	1	6.022 × 10 ²³	
				H ₂ O molecules	
Ammonia(NH ₃)	17	17g	1		1
Carbon dioxide	44	44g			
(CO ₂)					
Hydrogen (H ₂)	2	4 g	2	2 × 6.022 × 10 ²³	2
				H ₂ molecules	
Oxygen(O ₂)	32	64 g			2
Nitrogen(N ₂)	28	140g	5	*******	******
Water(H ₂ O)	18	180g		10 × 6.022 × 10 ²³	
				H ₂ O molecules	
Ammonia(NH ₃)	17	8.5g	0.5		
Carbon dioxide (CO ₂)	44	220g			

Activity 18

 ${
m N_2}$ is a diatomic molecule. The molecular mass of nitrogen is 28. Complete the word diagram given below.

Find the number of molecules, number of atoms and the number of electrons in 22 grams of carbon dioxide.

Volume of a gas and Moles

273 K temperature and 1 atm pressure are known as standard temperature and pressure or STP. That is, at STP one mole of any gas will occupy a volume of 22.4 L. This is called molar volume at STP.

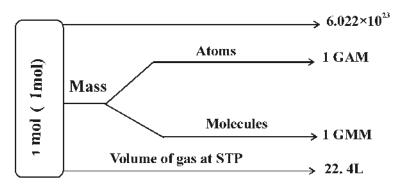
Activity 20

The volumes of certain gases at STP are given below. Find the number of moles in each.

Volume	Number of moles
22.4 Litres	
44.8 Litres	
67.2 Litres	
112 Litres	***************************************
224 Litres	

Number of moles of a gas at STP = $\frac{\text{Volume of the gas in litres at STP}}{22.4 \text{ L}}$

Activity 21


Examine the samples given.

- a) 24 g C
- b) 22.4 L of NH₃ at STP c) 4 mol of H₂ SO₄
- d) 54 g of Water e) 112 L of CO₂ at STP f) 1 Kilogram of CaCO₃
- i) Arrange the samples in the increasing order of the number of molecules in each.
- ii) What will be the ascending order of the number of atoms the samples given above.

At a Glance

For Atoms	For Molecules	For Gases @ STP
Number of GAM =	Number of GMM =	Number of moles at STP
Given mass in grams	Given mass	= Volume of gas at
GAM of the element	GMM	STP in litres
		22.4 litres

Number of Atoms =	Number of Molecules =	Number of Molecules =
Number of GAM × 6.022 × 10 ²³	Number of GMM × 6.022 × 10 ²³	Number of moles × 6.022 × 10 ²³

ANSWER KEY

- 1. 5 Litre
- 2. Temperature and kinetic energy increase
- 3. Here the temperature is constant. From bottom to top, the external

pressure decreases. Hence volume of the bubble increases. (Boyle's law).

- 4. (a) 100
 - (b) Boyle's Law
 - (c) 50 L
- 5. (a)3
 - (b) Charle's Law
 - (c) 930 mL
- 6. (a)Avogadro's Law
 - (b) Charle's Law
- 7.

Gas	Volume	Number of molecules
Nitrogen	20 L	х
Oxygen	40 L	2x
Ammonia	x/2	x/2
Carbon dioxide	80 1	4 x

8. Complete the following table

Element	Atomic Mass	Given mass	Number of Atoms
Hydrogen	1	1g	6.022 × 10 ²³
Carbon	12	12g	6.022×10^{23}
Oxygen	14	14g	6.022×10^{23}
Nitrogen	16	16g	6.022×10^{23}
Sodium	23	23g	6.022×10^{23}

9. Complete the following table

Element	Atomic Mass	Given mass	Number of GAM	Number of Atoms
Hydrogen	1	1g	1	6.022×10^{23}
Hydrogen	1	2g	2	$2 \times 6.022 \times 10^{23}$
Carbon	12	12g	1	6.022×10^{23}
Carbon	12	24g	2	$2 \times 6.022 \times 10^{23}$
Nitrogen	14	14 g	1	6.022×10^{23}
Nitrogen	14	42g	3	6.022×10^{23}
Oxygen	16	16 g	1	6.022×10^{23}
Oxygen	16	80 g	5	$5 \times 6.022 \times 10^{23}$
Sodium	23	230g	1	6.022×10^{23}
Sodium	23		10	$10 \times 6.022 \times 10^{23}$

10. How many GAM is present in the following

=5

- (a) 70 grams of Nitrogen
- (b) 160 grams of Oxygen

Answer:

(a) 70 grams of Nitrogen

Number of GAM = Given Mass in grams / GAM of element = 70 g / 14 g

(b) 160 grams of Oxygen

Number of GAM = Given Mass in grams / GAM of element

= 10

11.

Element	Atomic	Given	Number of	Number of Atoms
	Mass	mass	GAM	
Hydrogen	1	4g	4	4 × 6.022 × 10 ²³
Carbon	12	60g	5	$5 \times 6.022 \times 10^{23}$
Nitrogen	14	42g	3	$3 \times 6.022 \times 10^{23}$
Oxygen	16	80g	5	$5 \times 6.022 \times 10^{23}$

12.

Element	Atomic Mass	Given Mass	Number of Atoms	Number of Mole atoms
Hydrogen	1	1g	6.022×10^{23}	1
Carbon	12	12g	6.022×10^{23}	1
Nitrogen	14	14g	6.022 × 10 ²³	1
Oxygen	16	16g	6.022×10^{23}	1
Sodium	23	23g	6.022×10^{23}	1
Hydrogen	1	2g	6.022×10^{23}	2
Carbon	12	36g	6.022 × 10 ²³	3
Nitrogen	14	70g	6.022×10^{23}	5
Oxygen	16	160g	$10 \times 6.022 \times 10^{23}$	10
Sodium	23	11.5g	$0.5 \times 6.022 \times 10^{23}$	0.5

- 13. 1) 2
- 2) 3
- 3) 28
- 4) 18
- 5) 17

- 6) 44
- 7) 40
- 8) 180
- 9) 106
- 10) 98

14. Fill in the blanks of the following table.

Element /	Molecular	Mass in	GMM	Number of molecules
Compound	Mass	grams		
Hydrogen (H ₂)	2	2 g	1	$6.022 \times 10^{23} \text{ H}_2 \text{ molecules}$
Oxygen(O ₂)	32	32 g	1	$6.022 \times 10^{23} O_2$ molecules
Nitrogen(N ₂)	28	28g	1	$6.022 \times 10^{23} N_2$ molecules
Water(H ₂ O)	18	18g	1	$6.022 \times 10^{23} \text{ H}_2\text{O} \text{ molecules}$
Ammonia(NH ₃)	17	17g	1	$6.022 \times 10^{23} \ \mathrm{NH_3}$ molecules
Carbon dioxide	44	44g	1	6.022 × 10 ²³
(CO ₂)				CO ₂ molecules

- 15. One GMM Nitrogen is 28 g Nitrogen.
 - (a) How many GMM are there in 56 g Nitrogen?
 - (b) How many molecules are present in it?

Answer:

- (a) 2
- (b) $2 \times 6.022 \times 1023$
- 16. a) 10, $10 \times 6.022 \times 1023$
 - b) a) 5, $5 \times 6.022 \times 10.23$

17.

Element/	Molecular	Given	GMM	Number of moles	Number of
Compound	Mass	Mass		of molecules	molecules
Hydrogen (H ₂)	2	2 g	1	1	6.022 × 10 ²³
					H ₂ molecules
Oxygen(O ₂)	32	32 g	1	1	6.022 × 10 ²³
					O ₂ molecules
Nitrogen(N ₂)	28	28g	1	1	6.022 × 10 ²³
					${ m N}_2$ molecules

Water(H ₂ O)	18	18g	1	1	6.022 × 10 ²³ H ₂ O molecules
Ammonia(NH ₃)	17	17g	1	1	6.022×10^{23} NH $_3$ molecules
Carbon dioxide	44	44g	1	1	6.022×10^{23} CO_2 molecules
Hydrogen (H ₂)	2	4 g	2	2	2 × 6.022 × 10 ²³
J J , , , , , , , , , , , , , , , , , ,)			H ₂ molecules
Oxygen(O ₂)	32	64 g	2	2	$2 \times 6.022 \times 10^{23}$ O ₂ molecules
Nitrogen(N ₂)	28	140g	5	5	$5 \times 6.022 \times 10^{23}$ N_2 molecules
Water(H ₂ O)	18	180g	10	10	$10 \times 6.022 \times 10^{23}$ H ₂ O molecules
Ammonia(NH ₃)	17	8.5g	0.5	0.5	$0.5 \times 6.022 \times 10^{23}$ NH ₃ molecules
Carbon dioxide (CO ₂)	44	220g	5	5	$5 \times 6.022 \times 10^{23}$ CO ₂ molecules

18. For the answer , scan the QR code given below

19. Number of molecules = 0.5 × 6.022 × 10²³
Number of atoms = 3 × 0.5 × 6.022 × 10²³
Number of Electrons = 22 × 0.5 × 6.022 × 10²³
VIDYA JYOTHI Class 10 ►

(Number of electrons in one molecule of CO₂ = 6+8+8=22)

20.

Volume	Number of moles
22.4 Litres	1
44.8 Litres	2
67.2 Litres	3
112 Litres	5
224 Litres	10

- 21. a) $24 \text{ g C} = 2 \times 6.022 \times 10^{23}$
 - b) 22.4 L of NH₃ at STP = 6.022×10^{23}
 - c.) 4 mol of H₂ $SO_4 = 4 \times 6.022 \times 10^{23}$
 - d) 54 g of Water = $3 \times 6.022 \times 10^{23}$
 - e) 112 L of CO_{2} at STP = $5 \times 6.022 \times 10^{23}$
 - f) 1 Kilogram of CaCO₃ = $10 \times 6.022 \times 10^{23}$

Answer: b<a<d<c<ef

- 22. a. $24 \text{ g C} = 2 \times 6.022 \times 10^{23}$
 - b. 22.4 L of NH₃ at STP = $4 \times 6.022 \times 10^{23}$
 - c. 4 mol of $H_2 SO_4 = 7 \times 4 \times 6.022 \times 10^{23}$
 - d. 54 g of Water = $3 \times 3 \times 6.022 \times 10^{23}$
 - e. 112 L of CO_2 at STP = $3 \times 5 \times 6.022 \times 10^{23}$
 - f. 1 Kilogram of CaCO₃ = $5 \times 10 \times 6.022 \times 10^{23}$

Answer: a<b<d<e<c<f

UNIT TEST

Score: 20

Time: 20minute

(Answer any four questions from 1-6)

- 1. Gas molecules are in a state of rapid random motion in all directions. What happens to the energy of molecules during this motion?
- 2. Analyse the situation given situation and identify the gas law which is associated with it.
 - ± The size of an inflated balloon decreases when it is immersed in cold water

(Pressure and number of molecules are same)

- 3. 1 mole = _____ molecules
- 4. $128 \text{ g O}_2 =$ GMM (Molecular mass of $O_2 = 32$)
- 5. Calculate the mass of 5 GAM of carbon (Atomic mass of carbon = 12)
- 6. What is the mass of 5 mole molecules of nitrogen(Molecular mass of

 $nitrogen = 28) (4 \times 1 = 4)$

(Answer any five questions from 7-13)

- 7. Among 50 g of carbon and 50 g of He, which one contains more number of atoms?
- 8. calculate the number of GAM of the following

a) 200 g of Calcium

b) 140 g of Nitrogen

(Atomic mass: Ca =40, Na=14)

- 9. Find out the number of molecules in 90 g of Water. Also calculate the total number of atoms. (Atomic mass: H=1, O=16)
- 10. Arrange the following in the increasing order of number of molecules 100 g $\rm H_2O,~100~g~HCl$, 100 $\rm gH_2SO_4$

(Molecular mass: H₂O= 18 HCl=36.5 H₂SO₄= 98)

- 11. Calculate the number of molecules present in 67.2 litre of CO₂ at STP
- 12. The volume occupied by one mole of a gas is called the molar volume of the gas .
 - (a) What is the molar volume of gases at STP
 - (b) Find the mass of 224 L of NH3 at STP
- 13. Find the number of atoms and number of molecules in 142 g of Chlorine

(Atomic mass of Chlorine = 35.5 g)

 $(5 \times 2 = 10)$

(Answer any two questions from 14-16)

14. Arrange the following in the ascending order of the number of atoms.

a) 120 g of Mg

b) 80 g of Ca

c) 2.3 g of Na

(Atomic Mass: Na = 23, Mg=24, Ca=40) 15. Equal volumes of two gases kept under STP are given below.

(Molecular mass of $NO_2 = 46$)

264 g of CO_2

.....g of NO₂

- a. Fill in the blanks
- b. Calculate the number of molecules in NO₂
- 16. The data showing the relation between the pressure and volume of fixed mass of a gas is given below. (Temperature is constant).

Pressure	Volume
1 atm	80 L
	40 L
4atm	
8atm	

- a) Complete the table.
- b) State the gas law is applicable here.

 $(2 \times 3 = 6)$

ANSWER KEY

- 1. The energy does not change
- 2. Charles law
- 3. 6.022×10^{23} molecules
- 4. 4 GMM
- **5.** 60 g
- 6. 140 g
- **7.** 50 g of He
- 8. a) 5 b) 10
- 9. $5 \times 6.022 \times 10^{23}$
- 10. $100 \text{ g H}_2\text{SO}_4 < 100 \text{ g HCl } < 100 \text{ g H}_2\text{O}$
- 11. $3 \times 6.022 \times 10^{23}$
- 12. (a) 22.4 L
 - (b) 170 g
- 13. Number of atoms = $(142 \text{ g} / 35.5 \text{ g}) \times 6.022 \times 10^{23}$

 $= 4 \times 6.022 \times 10^{23}$

Number of molecules = $(142 \text{ g} / 71 \text{ g}) \times 6.022 \times 10^{23}$

 $= 2 \times 6.022 \times 10^{23}$

- 14. 2.3 g of Na < 80 g of Ca < 120 g of Mg
- 15.

a. 264 g of CO ₂	276 g of NO ₂
a. 264 g of CO ₂	276 g of NO_2

- b. $6 \times 6.022 \times 10^{23}$
- 16. a.

•	Pressure	Volume
	1 atm	80 L
	2 atm	40 L
	4atm	20 L
	8atm	10 L

b. Statement of Boyle's Law

REACTIVITY SERIES AND ELECTRO CHEMISTRY

Ability to participate in a chemical reaction for each and every metal is different. Electro chemical series is based on this difference in reactivity of metals. Metals having low reactivity are displaced from their salt solution by metals of high reactivity. This reaction is called displacement reaction. These reactions involve electron movement and there by production or utilization of electrical energy as in the galvanic cell and electrolytic cell. Galvanic cell converts chemical energy to electrical energy and electrolytic cell converts electrical energy to chemical energy. In this chapter we discuss about the chemistry behind these.

At a glance

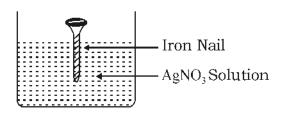
- Metals react with air, water and acid in completely different manner.
- Metals are arranged in the reactivity series based on their ability to react.
- Displacement reaction Metals with low reactivity are displaced from their salt solution by metals of high reactivity.
- Oxidation and reduction takes place in displacement reaction.
- Oxidation is the loss of electron
- Reduction is the gain of electron
- In Redox reaction oxidation and reduction takes place simultaneously.

Activity 1

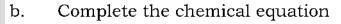
(a) Same quantity of sodium, magnesium and copper are given. Complete the following table on the basis of their reaction with same amount of cold and hot water taken in different test tubes.

Metal	Cold water	Hot water
Sodium		
Magnesium		
Copper		

- b) Which metal reacts vigorously?
- c) Which gas is formed in this reaction?
- d) Write the Chemical equations of these reactions?
- e) Arrange these metals in the increasing order of their reactivity with water.


- (i) A fresh Magnesium ribbon losing it's luster when kept exposed in air for some days. Why?
- (ii) Write down the balanced Chemical equation of this reaction.

Activity 3


Read the hints carefully

- ◆ Freshly cut metallic surfaces have a shiny appearance. This property is called metallic luster.
- The luster of a freshly cut Sodium loses immediately.
- ◆ Luster of Aluminium vessels diminishes after a long time.
- ◆ The shiny appearance of gold doesn't fade even after a long time.
- (a) Why metals lose luster?
- (b) Arrange these metals in the decreasing order of reactivity with atmospheric air.

Activity 4

a. Write the changes on the surface of the iron nail

$$Fe + 2AgNO_3 \rightarrow Fe(NO_3)_2 + \underline{\hspace{1cm}}$$

- c. In which metal does oxidation take place?
- d. Name the metal ion which undergoes reduction.
- e. Write the equation for oxidation.
- f. Write the equation for reduction.

Some metals are placed in metallic salt solutions (Reactivity of metals Zn > Fe > Cu > Ag)

Metal Salt solution	Zn	Fe	Ag
Zinc Sulphate (ZnSO ₄)			
Copper sulphate (CuSO ₄)			
Silver nitrate (AgNO ₃)			

- a. Put '\' ' mark where displacement reaction takes place and '\' ' mark where it doesn't?
- b. Write the chemical equation in which the displacement reaction takes place?

Activity 6

Complete the table by choosing suitable equation from the following.

•
$$Zn \rightarrow Zn^{2+} + 2\overline{e}$$
 • $Cu \rightarrow Cu^{2+} + 2\overline{e}$

•
$$Zn^{2+} + 2\overline{e} \rightarrow Zn$$
 • $Cu^{2+} + 2\overline{e} \rightarrow Cu$

•
$$Fe \rightarrow Fe^{2-} + 2\overline{e}$$
 • $Ag \rightarrow Ag^{+} + 1\overline{e}$

•
$$Fe^{2+} + 2\overline{e} \rightarrow Fe$$
 • $Ag^{+} + 1\overline{e} \rightarrow Ag$

Reaction	Oxidation	Reduction
$Zn + CuSO_4$	$Zn \rightarrow Zn^{2+} + 2e$	A
$Zn + AgNo_3$	В	С
$Fe + CuSO_4$	D	$Cu^{2-} + 2\overline{e} \to Cu$

Answer Key

Activity 1

(a)

Metal	Cold water	Hot water
Sodium	Reacts vigorously	
Magnesium	No reaction	Reacts
Copper	No reaction	No reaction

- (b) Sodium
- (c) Hydrogen
- (d) $2Na + 2H_2O \rightarrow 2NaOH + H_2$ $Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$

(e) Copper < Magnesium< Sodium

Activity 2

- a) This is due to the reaction of Magnesium with atmospheric air.
- b) $2Mg + O_2 \rightarrow 2MgO$

Activity 3

- (a) Because of reaction with atmospheric air.
- (b) Na>Al>Au.

- a. Deposits silver
- b. 2Ag
- c. Fe
- d. Ag-
- e. $Fe \rightarrow Fe^{2+} + 2\overline{e}$
- f. $Ag^+ + 1\overline{e} \rightarrow Ag$

CHEMISTRY

Activity 5

	ς.
$\overline{}$	٦,
а.	
**	•

Metal	Zn	Fe	Ag
Zinc sulphate	×	×	×
Copper sulphate	√	4	×
Silver sulphate	>	*	×

b)
$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

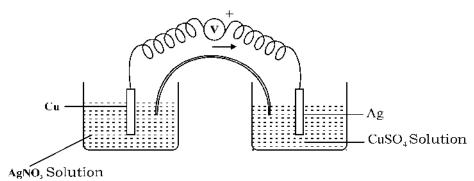
$$Zn + 2AgNO_3 \rightarrow Zn(NO_3)_2 + 2Ag$$

$$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$$

$$Fe + 2AgNO_3 \rightarrow Fe(NO_3)_2 + 2Ag$$

Activity 6

$$A - Cu^{2-} + 2\overline{e} \rightarrow Cu$$


$$B - Zn \rightarrow Zn^2 + 2\overline{e}$$

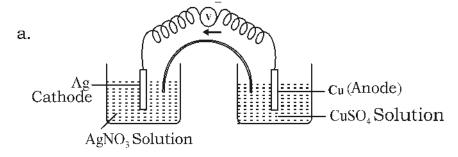
$$C - Ag^- + 1\overline{e} \rightarrow Ag$$

$$D - Fe \rightarrow Fe^{2+} + 2\overline{e}$$

At a glance

- The device used for the conversion of chemical energy to electrical energy through redox reaction is called Galvanic cell or Voltaic cell.
- Oxidation occurs at anode and reduction at cathode.

- a. Illustrate the cell in the correct manner
- b. Label anode and cathode
- c. Write the chemical equation of the process at anode?
- d. Write the chemical equation of the process at cathode?
- e. Write the equation of the redox reaction?

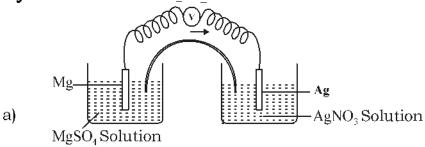

- a. Draw the picture of a galvanic cell using the following substances Also label the anode and cathode (AgNO $_3$ solution, MgSO $_4$ solution, CuSO $_4$ solution, Ag rod, Fe rod, Mg rod)
- b. Write the chemical equation at anode and cathode of this cell.

Activity 9

Complete the table

			Chemical reaction		
Cell	Anode	Cathode	Anode	Cathode	Redox
					Reaction
Fe - Cu	Fe	A	$Fe \rightarrow Fe^{2-} + 2\overline{e}$	B	Н
Cu - Ag	<u>C</u>	Λg	D	$2\Lambda g^+ + 2\overline{e} \to 2\Lambda g$	I
					$Mg + 2Ag^+ \rightarrow$
Mg-Ag	Mg	E	F	G	$Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$

Answer Key


b. Cathode (Ag), Anode (Cu)

C.
$$Cu \rightarrow Cu^{2+} + 2\overline{e}$$

d.
$$2Ag^{+} + 2\overline{e} \rightarrow 2Ag$$

e.
$$Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$$

Activity 8

b)
$$Mg \rightarrow Mg^{2+} + 2\overline{e}$$
 (Anode)

c)
$$2Ag^+ + 2\overline{e} \rightarrow 2Ag$$
 (Cathode)

Activity 9

$$A-Cu$$

$$B - Cu^{2+} + 2\overline{e} \rightarrow Cu$$

$$C-Cu$$

$$D - Cu \rightarrow Cu^2 + 2\overline{e}$$

$$E - Ag$$

$$F - Mg \rightarrow Mg^{2+} + 2\overline{e}$$

$$G - 2Ag^+ + 2e^- \rightarrow 2Ag$$

$$H - Fe + Cu^{2+} \rightarrow Fe^{2+} + Cu$$

$$I - Cu + 2Ag^{\perp} \rightarrow Cu^{2\perp} + 2Ag$$

At a Glance

Electrolytes are substances which conduct electricity in molten state or in aqueous solutions and undergo a chemical reaction.

* Electrolytic cell is a device which converts electrical energy to chemical energy.

Activity 10

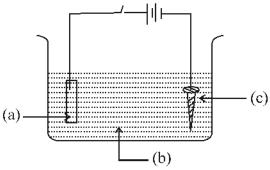
Molten Sodium Chloride undergoes electrolysis

- a. What is the product at anode?
- b. What is the product at cathode?
- c. Sodium Chloride at solid state does not conduct electricity, Why?

Activity 11

Complete the table

Molten Sodium	Cathode	<u>E</u>	Na
Chloride	Anode	<u>F</u>	<u>G</u>
Sodium	Cathode	$2H_2O + 2\overline{e} \rightarrow H_2 + 2(OH)^-$	<u>H</u>
Chloride solu- tion	Anode	Ī	Cl_2


Activity 12

NaCl solution undergoes electrolysis

Specify the reason why hydrogen evolves at cathode?

Activity 13

a) Write a, b & c in the picture which shows electroplating of Copper on an Iron nail.

- b) Which reaction takes place at cathode? Write the chemical equation.
- c) Complete the chemical equation of the reaction at anode.

$$Cu \rightarrow \dots + 2\bar{e}$$

What is the name of this reaction?

Activity 14

- a) Silver rods and silver cyanide solution are given. Draw the picture of electroplating of silver on copper vessel.
- b) Write down the chemical equations of the reactions at anode and cathode. (Oxidation state of silver (Ag) is +1)

Activity 15

List out the practical utility of electrolysis

Answer Key

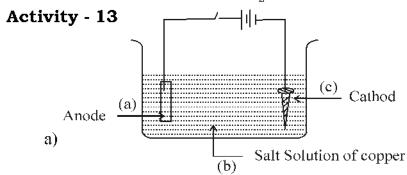
Activity 10

- a) Cl,
- b) Na
- c) ions have no freedom of movement

Activity 11

$$E \rightarrow Na^{+} + 1e^{-} \rightarrow Na$$

$$F \rightarrow 2Cl^- \rightarrow Cl_2 + 2\overline{e}$$

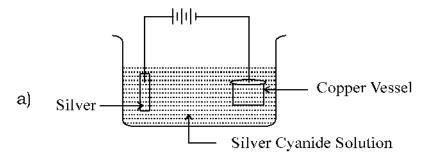

$$G \rightarrow Cl_2$$

$$H \rightarrow H$$

$$I \rightarrow 2Cl^{-} \rightarrow Cl_{2} + 2\overline{e}$$

Activity - 12

Reducing tendency of H₂O is greater than Na¹ ion


b) Reduction of Cu²⁺ ions.

$$Cu^2 + 2\overline{e} \rightarrow Cu$$

c)
$$Cu \rightarrow Cu^{2+} + 2\bar{e}$$

Oxidation of copper

Activity 14

b) Anode

$$\Lambda g \to \Lambda g^{+} + 1\bar{e}$$

Cathode

$$Ag^+ + 1e^- \rightarrow Ag$$

Activity 15

Production of metals Production of nonmetals Production of compounds Refining of metals Electroplating

UNIT TEST

Marks: 20 Time: 40 mts

(Answer all questions from 1 to 5)

 (5×1)

Which of the following metals cannot displace copper from copper sulphate solution?

Fe, Ag, Zn, Mg

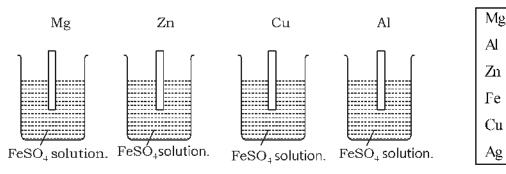
2. Write the reaction which takes place at anode in Cu-Ag-Cell

a)
$$Cu \rightarrow Cu^{2+} + 2\overline{e}$$

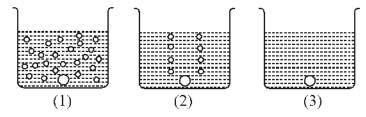
b)
$$Cu^{2+} + 2\overline{e} \rightarrow Cu$$

$$c)Ag \rightarrow Ag + \overline{le}$$

$$d) \quad Ag^+ + 1\overline{e} \to Ag$$


- 3. Which of the following metals liberate H₂ While reacting with hot water?
 - a. Silver b. Iron c. Magnesium d. Copper
- 4. Which of these elements is produced at cathode when sodium chloride solution is electrolysed?
 - a. sodium b. chlorin c. Oxygen d.Hydrogen
- 5. Which metal cannot displace Hydrogen from dil HCl?

Pb, Cu, Sn, Ni


Answer any 4 questions from 6-10.

 $(4 \times 2 = 8)$

6. Some metals in the reactivity series are given in the box. Observe the figure and answer the questions.

- a) Which metals can displace Fe from these solutions?
- b) Which metals cannot displace Fe from these solutions? Why?
- 7. Write the chemical equation taking place at anode and cathode when molten sodium chloride get electrolysed?
- 8. Following illustrations show the reaction of Fe, Cu and Mg with dil HCl

- a) Name the metal in the beaker that does not undergo any chemical reaction?
- b) Which is the metal in the first figure?
- 9. Write any two situations where electrolysis is useful in day to day life?

10. Classify the following as oxidation and reduction.

a)
$$Fe \rightarrow Fe^{2+} + 2\overline{e}$$
 b) $Fe^{2-} + 2\overline{e} \rightarrow Fe$

b)
$$Fe^{2-} + 2\overline{e} \rightarrow Fe$$

c)
$$Mg \rightarrow Mg^{2+} + 2\overline{e}$$
 d) $Mg^{2+} + 2\overline{e} \rightarrow Mg$

d)
$$Mg^{2+} + 2\overline{e} \rightarrow Mg$$

Answer any 4 questions from 11 - 15

$$(4 \times 3 = 12)$$

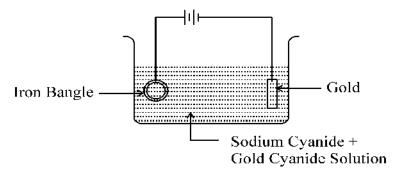
- 11. Take equal quanitity of Na, Mg, Zn, Cu, Fe and put it in cold water.
 - a) Which metal rects with cold water?
 - b) What do you observe if a drop of phenol phthalin is added to this solution? Write the reason.
- 12. Imagine Zn rod is dipped in FeSO₄ solution
 - (i) Which of the following is correct?

a)
$$Fe \rightarrow Fe^{2+} + 2\overline{e}$$

b)
$$Zn \rightarrow Zn^{2+} + 2\overline{e}$$
 c) $Zn^{2+} + 2\overline{e} \rightarrow Zn$

c)
$$Zn^{2+} + 2\overline{e} \rightarrow Zn$$

- (ii) Write the equation of redox reaction.
- 13. Some salt solutions and metal rods are given below.


Salt soutions - Mg SO₄, CuSO₄, AgNO₃, NaCl

Metal rods - Zn, Pt, Mg, Ag, Al

- a) Draw the picture of an electro chemical cell by using suitable requirements.
- b) Label anode and cathode

(Reactivity Na > Mg > Cu > Ag)

14. a) The given picture shows electroplating of gold on an iron bangle. Correct if there are errors. (Oxidation state of gold (Au) is +3

CHEMISTRY

- b) Write the chemical equations of reactions at anode and cathode.
- 15. a) Write the chemical equations related to the reactions at a rode and cathode when an aqueous solution of sodium chloride undergoes electrolysis.
 - b) Sodium chloide in the solid state doesn't conduct electricity. Why?

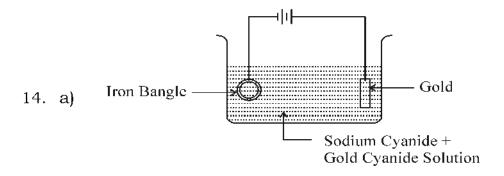
Answer Key

- 1. Ag
- 2. $Cu \rightarrow Cu^{2+} + 2\overline{e}$
- 3. Magnesium
- 4. Hydrogen
- 5. Cu
- 6. a) Mg, Zn, Al
 - b) Cu, Reactivity is less than Fe
- 7. Anode $2Cl^- \rightarrow Cl_2 + 2\overline{e}$

Cathode $Na^{+} + 1\overline{e} \rightarrow Na$

- 8. a) Cu
 - b) Mg
- 9. a) Production of metals and nonmetals
 - b) Electroplating
- 10. a, c Oxidation
 - b, d reduction
- 11. a) Na
 - b) Solution turns pink colour.

Na OH (Alkali) formed


- 12. (i) b
 - (ii) $Zn + Fe^{2+} \rightarrow Fe + Zn^{2+}$

(Anode)

Mg

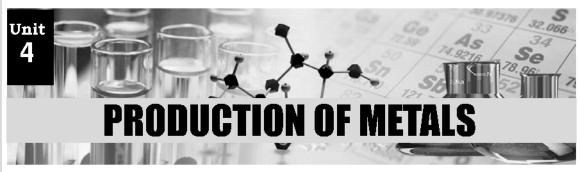
Ag(Cathode)

AgNO₃ Solution

- b) Anode
- c) $Au \to Au^{3+} + 3\bar{e}$

Cathode

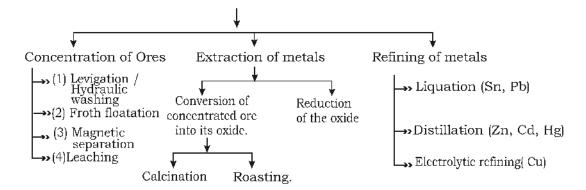
- c) $Au^{3+} + 3e^{-} \rightarrow Au$
- 15. a) Anode


$$2CI \rightarrow CI_2 + 2e$$

Cathode

$$2H_2O+2\overline{e}\to H_2+2O\overline{H}$$

b) Absence of freely moving ions.


ജ

Discovery of metals is very significant in the scientific development. Some metals are found free in nature. But majority of metals are extracted from the ores. Extraction of metals from it's ore, refining of the metals, manufacture of Iron and Aluminium are the main concepts in this chapter.

At a Glance

- · Mineral, Ore
 - Production of metals Important steps

Activity 1

Some metals and ores are given. Pair them suitably.

Metals	Iron, Zinc, Aluminium, Copper
Ores	Cuprite, Bauxite, Magnetite, Calamine

Activity 2

Nature of certain ores and impurities are given below. Select the appropriate method of concentration of ores from the bracket (Froth floatation, Leaching, Levigation, Magnetic separation)

(i) Either the ore or the impurity is magnetic in nature VIDYA JYOTHI Class 10 ▶

- (ii) Density of ore is greater than the impurity
- (iii) Ore is soluble in appropriate solution
- (iv) Density of impurity is higher than the ore.

Classify the following minerals as in the table.

Cu₂S, ZnCO₃, Cu (OH)₂, CuFeS₂

Minerals to be subjected to

Calcination	Roasting

Activity 4

Complete the table.

Method of separation	Metal	
(i) Found in free state in nature	Gold, Silver	
ii) Metals separated by the electrolysis of		
molten ore		
(iii)	Iron, Zinc	

Activity 5

In calcination and roasting the ores are to be heated below their melting points. Give reason.

Activity 6

Some metals are given below. Complete the table.

Metals	Method of refining
(i) Mercury	
(ii). Copper	
(iii). Tin	
(iv) Zinc	
(v) Lead	

Activity 7

The minerals of Aluminium are Bauxite and Clay

- (a) Which is the ore of Aluminium?
- (b) Write any two characteristics of an ore?

- (a) Reducing agents are required for the extraction of metals from the ores. Why?
- (b) Name two metals extracted using Carbon/ Carbon monoxide as reducing agent?

Activity 9

Which properties of metals are used in the following situations.

- (a) Aluminium is used in making utensils for cooking.
- (b) Copper is used in making electric wires.
- (c) Gold is used in ornaments.

Activity 10

Activity 11

Name the reducing agenet used in extracting potassium, a reactive metal, from its ore. (Electricity, Carbon, Carbon monoxide)

Activity 12

The ores of Zinc are Zinc Blende and Calamine. The chemical equations relating to the extraction are given below.

$$2 \text{ ZnS} + 3O_2 \xrightarrow{\text{Heat}} 2 \text{ ZnO} + 2SO_2$$

- (a) Which chemical equation represents the process "roasting"?
- (b) How calcination differs from roasting?

Activity 13

Some metals are given in the box.

- (a) Arrange these metals in the order of decreasing reactivity.
- (b) Which metal is extracted using electricity as the reducing agent?
- (c) Which among these is seen free in nature?

(d) Name the metal which form the most stable compounds.

Activity 14

- (a) Electrolysis is used for refining of copper. A small piece of pure metal is used as the negative electrode, impure copper as the positive electrode and Copper Sulphate solution as electrolyte. Draw the picture shows this process.
- (b) Complete the table related to this process

Electrode	Chemical equations
Anode	
Cathode	

Activity 15

Some substances for refining of Copper by electrolysis are given. Arrange them suitably and complete the table. (Pure Copper, Impure Copper, Copper Sulphate solution)

Anode	
Cathode	
Electrolyte	
Equation of the reaction at anode	
Equation of the reaction at cathode	

ANSWER KEY

1. Iron : Magnetite

Zinc : Calamine

Aluminium: Bauxite.

Copper : Cuprite.

- 2. (i) Magnetic separation
- (ii) Levigation / Hydraulic washing

(iii) Leaching

- (iv) Froth floatation
- 3. Calcination ZnCO₃, Cu(OH)₂

Roasting - Cu₉S, CuFeS₉

- 4. (ii) Al, Na ii) Red
 - ii) Reducing metallic oxides using C/CO

CHEMISTRY

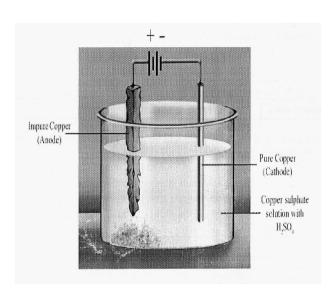
5. a) Calcination – Above the melting point, metallic compounds melt and may undergo chemical reactions

b) Roasting - Prevents ore from melting and also prevents the formation of compounds which could not be reduced.

6. Liquation

- Tin, Lead

Distillation


- Zinc, Mercury

Electrolytic refining

- Copper

- 7 (a) Bauxite
 - (b) * Abundance * Easily and cheaply separable * High metal content
- 8 (a) Metal ores are convered into its oxide in metallurgy. So a reducing agent is needed for the removal of oxygen from the oxide.
 - (b) Fe, Zn
- 9. (a) High Thermal Conductivity
 - (b) High electrical conductivity
 - (c) High maleability of gold, lustere, low chemical reactivity
- 10. Magnetic separation
- 11. Electricity
- 12. (a) $2 \text{ ZnS} + 3O_2 \xrightarrow{\text{heats}} 2 \text{ ZnO} + 2SO_2$
 - (b) Calcination Heating in the absence of airRoasting Heating in the presence of air.
- 13. a. Na > Zn > Fe > Au
 - b. Na
 - c. Au
 - d. Na

14. (a)

b)

Electrode	Chemical equations
Anode	$Cu \rightarrow Cu^{2-} + 2e^{-}$
Cathode	$Cu^{2+} + 2\overline{e} \rightarrow Cu$

15.	Anode	Impure Copper
_	Cathode	Pure Copper
	Electrolyte	CuSO ₄ solution
	Equation of the reaction at anode	$\frac{\text{Oxidatin of Copper}}{Cu \to Cu^{2+} + 2\overline{e}}$
,	Equation of the reaction at cathode	Reduction of Cu ²⁺
		$Cu^2 + 2e \rightarrow Cu$

At a Glance

Manufacture of Iron - Blast Furnace

(i) Haematite, Coke, Limestone

$$\mathrm{C} + \mathrm{O_2} \rightarrow \mathrm{CO_2}$$

$$CO_2 + C \rightarrow 2CO$$

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

(ii) Role of Limestone

$$CaCO_3 \rightarrow CaO + CO_2$$

 $(flux)$
 $CaO + SiO_2 \rightarrow CaSiO_2$
 $(flux)$ (gangue) (Slag)

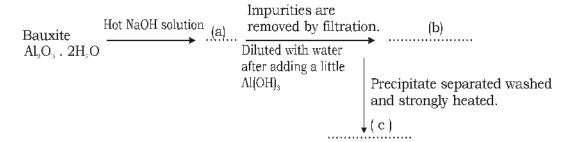
- (iii) Pig iron. : By cooling molten iron from Blast furnace
- Separation of Aluminium from Alumina _ Hall Heroult Process.
 - (i) Concentration of Bauxite (Al₂O₃ 2H₂O) Leaching using NaOH (Preparation of Alumina (Al₂O₃) from Bauxite).
 - (ii) Separation of Aluminium from Alumina Electrolysis

Cathode - Steel tank with carbon lining

Anode - Carbon Rods.

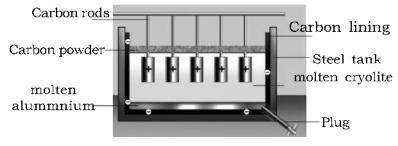
Electrolyte - Pure Alumina dissolved in molten cryolite.

Reaction at cathode
$$-$$
 Al³⁻ + 3e \rightarrow Al


Anode $_{-}$ 2O²⁻ - 4e \rightarrow O $_{2}$

C + O $_{2}$ \rightarrow CO $_{2}$

(Due to this reaction anode is to be replaced from time to time.)


Activity 16

Flow chart of concentration of bauxite is given. Complete the chart.

Activity 17

The figure showing the extraction of Aluminium from Alumina is given.

- (a) Name the reducing agent used in extacting Aluminium?
- (b) What is the role of cryolite in the electrolyte.
- (c) Give the chemical equation taking place at the cathode?
- (d) What is the need of replacing anode at regular intervals

Reducing agents are used in separating metals from ores. Name the reducing agents used in obtaining the given metals.

Process / Metal	Reducing agent
(i) Sodium from molten Sodium Chloride	
(ii) Iron from Haematite	

Activity 19

(a) Three alloys of iron, their constituents and uses are given in table. Arrange them correctly

Alloy	Constituents	Use
Alnico	Fe, C	Heating coil
Nichrome	Al, Ni, Co, Fe	Agricultural purpose
Steel	Fe, C, Cr, Ni	making Permanent magnet

(b) Which characterestic of Nichrome is used for the selected purpose?

Activity 20

Analyse the following reactions taking place in the blast furnace and answer the questions.

$$\begin{array}{ll} {\rm CaCO_3 \rightarrow CaO + CO_2} & {\rm C + O_2 \rightarrow \ CO_2} \\ {\rm CO_2 + C \rightarrow 2CO} & {\rm Fe_2O_3 + 3\ CO \rightarrow 2Fe + 3CO_2} \\ {\rm CaO + SiO_2 \rightarrow CaSiO_3} \end{array}$$

- (a) Write the chemical formula of iron ore?
- (b) Name the reducing agent used in the process.
- (c) Identity the gangue and flux in this process.
- (d) Write the chemical equation of slag formation.

Activity 21

Alnico is an alloy of Aluminium. Write the use of Alnico.

Complete the table related to the production of iron.

Gangue	
Flux	
Slag	
Equation of formation of slag	

Answer Key

- 16.a) Sodium Aluminate / NaAlO₂
 - b) Al (OH)₃ / Aluminium hydroxide.
 - c) Al_9O_3 / Aluminium oxide / Alumina
- 17.a) Electricity
 - b) Lower the melting point and increase the electrical conductivity.
 - c) $Al^{3+} + 3e \rightarrow Al$
 - d) Oxygen liberates from anode reacts with carbon.
- 18.i.) Electricity (ii) Carbon monoxide
- 19.a) Classifies accordingly
 - b) High electrical resistance.
- 20.a) Fe_2O_3 b) CO c) SiO_2 , CaO d) CaO + $SiO_2 \rightarrow CaSiO_3$ Gangue Flux
- 21. For making Permanent magnets

22.	Gangue	SiO ₂
	Flux	CaO
	Slag	CaSiO ₃
	Equation of formation of slag	CaO + SiO ₂ →CaSiO ₃

UNIT TEST

Score: 20 Time: 40mts.

Questions 1-6. Answer any four (1mark each)

- 1. From the following which is used as the flux when CaO is the gangue (FeO, SiO₂, Na₂O)
- 2. Identify the relation and complete.

Cuprous Sulphide: Roasting

- Zinc Carbonate : ———
- 4. Why iron pyretis a mineral of iron known as fool's gold?
- 3. The reducing agent used in the extraction of iron is —
- 5. Write the chemical formula of bauxite, the ore of Aluminium.
- 6. Select the method used in the refining of copper from the bracket. (Distillation, Electrolysis, Liquation)

Questions 7 - 13. Answer any five (2 marks each)

- 7. Write suitable methods for the concentration of following ores.
 - (a) Copper Pyrites.
 - (b) Ore of gold
 - (c) Magnetite
 - (d) Bauxite
- 8. Electrolytic process is used in the extraction of Aluminium from alumina
 - (a) Why cryolite added to the electrolyte?
 - (b) Write the chemical equation at the cathode.
- 9. Haematite, coke and limestone are used for the production of pig iron in blast furnace. What are the functions of limestone and coke?
- 10. Reactivity order of some metals are given. Analyse and answer the questions.

- (a) Metal found free in nature.
- (b) Metal extracted by electrolytic process.
- 11. Minerals of aluminium are bauxite and clay. But aluminium is not extracted from clay. Give two reasons.
- 12. Reducing agents are necessary to extract a metal from its ore. Which reducing agent is used to extract sodium from sodium chloride. Why?
- 13. Complete the table.

Alloy	Characterestics	Use.
(a)	Magnetic property	Making permanent magnets
Nichrome	(b)	Making heating coil

Questions 14-16. Answer any two (3 marks each)

Ore is lighter than gangue

Ore is lighter than gangue

Ore is soluble is specific solvents.

Gangue insoluble

Levigation

Levigation

Concentration of ore

15. (a) List of some metals are given. Arrange them according to the method of refining in the given table. (Zinc, Tin, Copper, Cadmium)

Liquation	Distillation	Electrolysis

- (b). Why are the selected methods used in refining Zinc and Tin?
- 16. a) Write the chemical equations in blast furnace relating to the role of limestone.
 - b) What are the constituents in stainless steel?

ANSWER KEY

- 1. SiO₂
- 2. Calcination
- 3. Carbon monoxide (CO)
- 4. Iron pyrites has a yellow brazen colour which resembles gold.
- 5. Al_2O_3 . $2H_2O$
- 6. Electrolysis
- 7. a. Froth flotation process
 - b. Hydrolic washing (levigation)

- c. Magnetic Seperation or Hydrolic washing
- d. Leeching
- 8. a. To decrease the melting point and to increase the electrical conductivity.

b.
$$Al^{3+} + 3e^{-} \rightarrow Al$$

9. Limestone

To produce the flux CaO

$$CaCO_3 \rightarrow CaO + CO_2$$

Coke

To produce the reducing ageat CO

$$C + O_2 \rightarrow CO_2$$

$$CO_2 + C \rightarrow 2CO$$

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

- 10. a. Au
 - b. A*l*
- 11. Extraction of *Al* from clay is very difficult and costly.

The content of Al in clay is very low

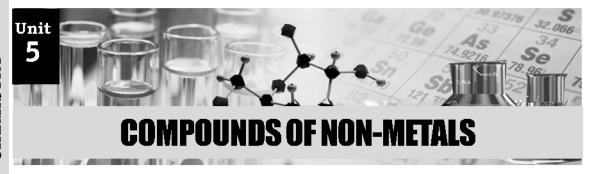
- 12. Electricity. Na is highly reactive. So strong reducing agents like electricity is needed for the reduction.
- 13. a. Alnico
 - b. High restivity
- 14. a. Froth flotation process
 - b. Ore is dencer than gangue
 - c. Leaching
- 15. a.

Liquation	Distillation	Electrolysis
Tin	Zinc	Copper
	Cadmium	

b. Zn has low boiling point

Sn is a metal with low melting point

16. a.
$$CaCO_3 \rightarrow CaO + CO_2$$


$$CaO + SiO_2 \rightarrow CaSiO_3$$

Flux

gangue

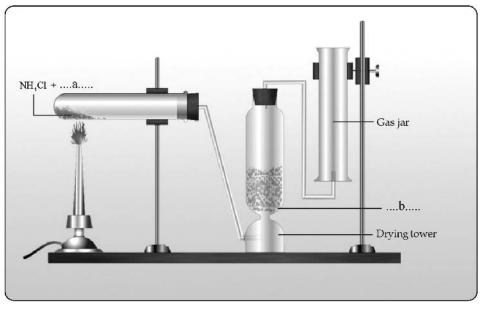
Slag

b. Ni, Cr, Fe, C

Ammonia and sulphuric acid are the chemicals have utmost important in the agricultural and industrial sector. Here we are familiar with the methods of production and properties of these compounds.

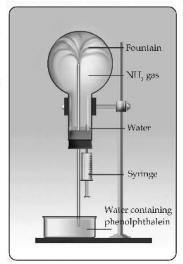
At a glance

- Ammonium chloride and calcium hydroxide are used in the laboratory to prepare ammonia
- > Ammonia is basic in nature
- > Solubility of ammonia in water in very high
- A highly concentrated aqueous solution of Ammonia liquor Ammonia
- Ammonia gas can be liquified by applying pressure liquid Ammonia


Activity 1

Take a little NH_4Cl in a watch glass, add a little $Ca(OH)_2$ to it and stir well .

- 1) Write the change happened when a wet red litmus paper show over the watch glass?
- 2) Write the reason behind this?


Activity 2

Look at the figure showing the preparation of Ammonia in the laboratory.

- 1) Find a and b
- 2) Complete the chemical reaction $2NH_4Cl + (a) \rightarrow CaCl_2 + 2NH_3 + (c)$
- 3) Why did ammonia gas pass through a drying tower?
- 4. The gas jar used for collecting Ammonia is kept inverted why?

- i) Which property of ammonia shown through the experiment?
- ii) Why does water entering the flask changes its colour?
- ii) $NH_3 + H_2O \rightarrow \dots$

Activity 4

When an Ammonia tanker leaks, water is sprayed. What is the reason?

Activity 5

Write the difference between liquor Ammonia and liquid ammonia
VIDYA JYOTHI Class 10 >>>

Write any two uses of Ammonia?

At a Glance

Chemical reactions

Irreversible reaction (Chemical reactions in which reactants give products but the product do not give back the reactants under the same conditions)

Reversible reaction (Reactions taking place in both directions In a

in both directions In a reversible reaction the reaction in which the reactants change to the product is called forward reactions and that in which the products change back into the reactants is called the backward reaction.)

Eg: $N_2 + 3II_2 \Longrightarrow 2NII_3$

Eg: $C + O_2 \rightarrow CO_2$

Reversible Reaction

Reactants change to products

 $N_2 + 3H_2 \rightarrow 2NH_3$

Products change back to reactants

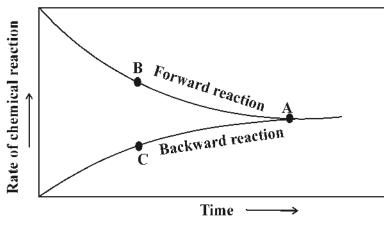
 $2NH_3 \rightarrow N_2 + 3H_2$

Chemical equilibrium

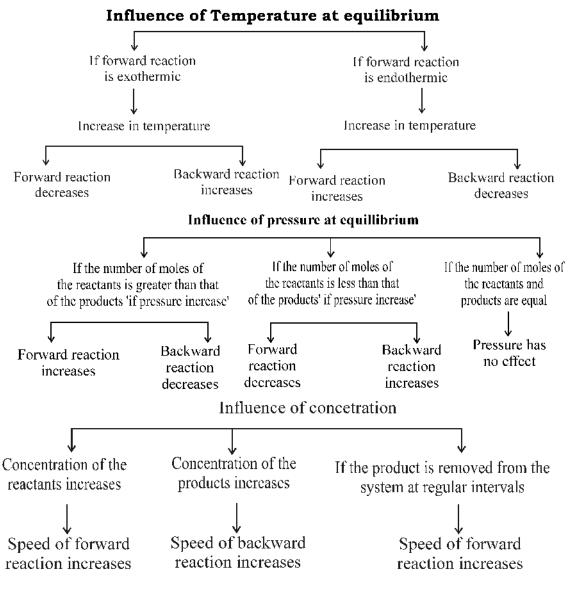
It is the change at which the rate of forward reaction becomes equal to the rate of backward reaction in a reversible reaction.

Le - Chateliers principle

When the concentration, pressure or temperature of a system at equilibrium is changed, the system will readjust itself so as to nullify the effect of that change and attain a new state of equilibrium.


- ⇒ Heat NH₄Cl in a boiling tube. Place a wet red litmus paper at the mouth of the test tube.
 - a) What change happens to the litmus paper ?
 - b) Which gas is responsible for this change? why ?
 - c) If the litmus paper is placed for a long time what will happen to the litmus paper?
 - d) What is the reason for the change?
 - e) What can be inferred about the density of the gases formed from this experiment?
 - f) Which is the white substance deposited at the side of the boiling tube?
 - g) How is this substance formed?
 - h) On the basis of this experiment choose the type of chemical reaction taking place here (Irreversible/ reversible)
 - i) Write the balanced equation of the chemical reaction.

Activity 8


A reversible reaction is given below. Write the equation of forward and backward reaction

$$2SO_2 + O_2 \iff 2SO_3$$
Forward reaction

Backward reaction

- a) What happens to the speed of forward reaction during the course of the reaction?
- b) What about the speed of backward reaction?
- c) At which point does the speed of forward and backward reaction become equal?
- d) Name the state where the rate of forward and backward reactions become equal?
- e) Did the reaction stop at this state?
- f) Chemical equilibrium is static in nature. why?
- g) In which type of system is chemical equilibrium possible?

$$\Rightarrow$$
 2SO₂ + O₂ \Longrightarrow 2SO₃ + Heat

- a) Is the forward reaction exothermic or endothermic?
- b) What is the number of moles of the reactants and products in this reaction?
- c) What is the effect of increase in temperature in this reaction?
- d) What will happen to the speed of the forward reaction if SO₃ is removed at regular intervals from the system?
- e) What will happen if the amount of oxygen is increased in this reaction?
- f) What will happen if pressure is increased?

Activity 11

$$\Rightarrow$$
 2SO, + O, \rightleftharpoons 2SO,

- a) What will happen if the catalyst V_2O_5 is added to this system at equiliburium?
- b) Give reason.
- c) What is the advantage of adding the catalyst in the beginning itself?

Activity - 12

$$N_{2_{(g)}} + O_{2_{(g)}} \longrightarrow 2NO_{(g)}$$

- i) What is the influence of pressure in this reaction?
- ii) Write the reason.

Answer key

- 1. i) Turns blue
 - ii) Ammonia is basic in nature
- 2. 1. a. Ca(OH), b. CaO

2.
$$2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O$$

- 3. To remove water
- 4. Density of Ammonia is less than air

3. i) Solubility in water

ii) Basic nature of Ammonium hydroxide. (Ammonia dissolves in water forms ammonium hudroxide)

iii)
$$NH_3 + H_2O \rightarrow NH_4OH$$

- 4. Solubility of NH₃ in water in very high
- A highly concentrated aqueous solution of Ammonia is liquor Ammonia. Ammonia gas can be liquified by applying pressure is liquid Ammonia
- 6. For the manufacture of chemical fertilisers like ammonium sulphate ammonium phosphate, urea etc.
 - As a refrigerant in ice plants
 - To clean tiles and window panes(Write any two uses)
- 7. a) Red litmus turns blue.
 - b) Ammonia (NH₃). Basic nature of NH₃
 - c) Blue litmus turns back to Red.
 - d) Presence of HCl gas.
 - e) The dencity of NH_3 is less than that of HCl. So the diffusion rate of NH_3 is greater than that of HCl. So NH_3 reaches first at the mouth of the test tube.
 - f) NII_4Cl (Ammonium Chloride)
 - g) $NH_3 + HCl \rightarrow NH_4Cl$ (HCl and NH_3 reacts)
 - h) Reversible reaction
 - i) $NH_4Cl \Longrightarrow NH_3 + HCl$

8.

$$2SO_2 + O_2 \rightarrow 2SO_3$$

$$2SO_3 \rightarrow 2SO_2 + O_2$$

Forward reaction

Backward reaction

- 9. a) Decreases
 - b) Increases
 - c) at A
- d) State of equilibrum VIDYA JYOTHI Class 10 ▶

- e) No
- f) Even at the state of equilibrum both forward and backward reactions go on continuously. (Only with the same rate)
- g) In a closed system (No factors should change
- 10. a) Exothermic
 - b) Reactants 3mol products 1 mol
 - c) Speed of forward reaction decreases and speed of backward reaction increases.
 - d) Speed of forward reaction increases
 - e) Speed of forward reaction increases
 - Speed of forward reaction will increase and speed of backward reaction will decrease
- 11. a) No change
 - b) There will be no influence of catalyst, when the system is at equilibrum.
 - c) Catalyst helps to attain equilibrum at the earliest.
- 12. 1. No influence
 - 2. Total number of molecules in the reactants and total number of molecules in the products are equal.

Sulphuric Acid (H₂SO₄)

At a glance

- Industrial preparation of Sulphuric acid contact process
- Concentrated H₂SO₄ has the ability to absorb chemically combined water, or hydrogen and oxygen from substance in the ratio corresponding to that of water. This process is known as dehydration
- Drying agents are substances capable of absorbing the moisture present in a substance
- > Sulphuric acid is called the king of chemicals.
- Concentrated Sulphuric acid can displace volatile acid from their salts.

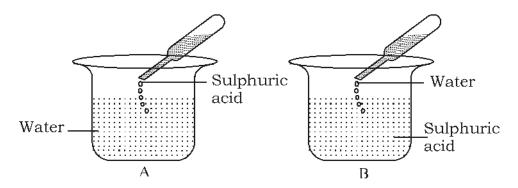
- Concentrated Sulphuric acid react with metals and non metals and oxidises them.
- Sulphate salts react with Barium chloride to form a white precipitate of Barium sulphate. It is insoluble in hydrochloric acid.

Some uses of Sulphuric acids and ammonia are given below. Tabulate correctly.

- > As a refrigerant in ice plants
- > Manufacture of explosives
- > Manufacture of paints
- > To clean tiles and window panes
- > Refining of petroleum

Activity 14

Flow chart representing the industrial preparation of $\mathrm{H_2SO_4}$ given below


Sulphur
$$O_2 \longrightarrow SO_2$$
 $O_2 \longrightarrow SO_3$ $O_3 \longrightarrow O_2 \longrightarrow SO_3$ $O_3 \longrightarrow O_4$ $O_4 \longrightarrow O_2 \longrightarrow O_2$ $O_2 \longrightarrow O_2$ $O_3 \longrightarrow O_3$

Using the above flow chart find A, B, C, D, E from the below chemical equation and balance the equations.

$$\begin{array}{ccc} \underline{A} & + O_2 & \rightarrow & \underline{B} \\ \underline{B} & + O_2 & \rightarrow & \underline{C} \\ \underline{C} & + H_2 S O_4 & \rightarrow & \underline{D} \\ \underline{D} & + H_2 O & \rightarrow & \underline{E} \end{array}$$

Activity 15

The process of dilution of H_2SO_4 conducted by two students

- i) Which method is correct?
- ii) Write the reason.

Take some sugar in a watch glass and add a few drops of concentrated sulphuric acid.

- i) What is your observation?
- ii) Which property of sulphuric acid is shown here?
- iii) $C_2H_{22}O_{11} \xrightarrow{Con H_2SO_2} \underline{A} + \underline{B}$ (Find A and B)

Activity 17

Which property of sulphuric acid is shown in the following situations?

- i) During the preparation of sulphuric dioxide the gas is passed through concentrated $\rm H_2SO_4$
- ii) Adding Con. H₂SO₄ on cotton
- iii) $C + 2H_2SO_4 \rightarrow CO_2 + 2H_2O + 2SO_2$
- iv) Adding con. H₂SO₄ on CuSO₄ Crystals
- v) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
- vi) $KNO_3 + H_2SO_4 \rightarrow KHSO_4 + HNO_3$

Activity 18

Why is concentrated sulphuric acid not used as a drying agent in the preparation of ammonia

CHEMISTRY

Activity 19

- i) Which of the substances from the below are used to identify the sulphate salt.
 - Sodium chloride, Nitric acid, Magnesium Sulphate, Barium chloride, Beaker, Water, Hydrochloric acid.
- ii) Write the procedure
- iii) Write the name of the white precipitate.

Answer key

13.	NH ₃	H ₂ SO ₄
	❖ As a refrigement in ice plants	 Manufacture of explosives
	❖ To clean tiles and window Panes	❖ Manufacture of paints
		 Refining of petroleum

- 14. A-S
 - $B SO_{2}$
 - $C SO_3$
 - $D H_0 S_2 O_7$
 - $E H_2SO_4$

$$S + O_2 \rightarrow SO_2$$

$$2SO_2 + O_2 = \frac{V_2O_5}{450^{\circ}C} 2SO_3$$

$$SO_3 + II_2SO_4 \rightarrow II_2S_2O_7$$

$$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$$

- 15. i) A
 - ii) Dilution of sulphuric acid is an exothermic reaction. If water is added to the acid, it will result in spurting and may cause burns to our body.
- 16. i) Forms charcoal
 - ii) Dehydration property
 - iii) $C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} \underline{12C} + \underline{11H_2O}$

- 17. i) Drying nature
 - ii) Dehydration property
 - iii) Oxidation property
 - iv) Dehydration property
 - v) Oxidation property
 - vi) Con.H₂SO₄ can displace volatile acids from their salts
- 18. Ammonia is basic in nature. Here it reacts with Sulphuric acid
- i) Magnesium sulphate, Barium Chloride, Beaker, Water, Hydrochloric acid
 - ii) Take a little Magnesium sulphate solution in a test tube and add three or four drops of Barium chloride solution to it. Add few drops of hydrochloric acid to this.
 - iii) Barium sulphate.

UNIT TEST

Time: 40 min. Score: 20

I Answer any four questions from 1 to 6

 $(1 \times 4=4)$

- 1. In which type of system equilibrium is possible?
- 2. What is the effect of pressure in the reaction.

$$H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$$

- 3. The gas that evolves first when NH_4Cl is heated is......
- 4. Name the process of industrial preparation of Ammonia?
- 5. Which chemical is used to identify sulphate salts. (Barium chloride, Calcium chloride, Sodium chloride)
- 6 $NII_1 + II_2O \rightarrow \dots$

II. Answer any five questions from 7 to 13

(2 x5=10)

7. Write the forward and backward reaction of the reversible reaction given below.

$$H_2 + I_2 \Longrightarrow 2HI$$

- 8. State Le-chateliers principle.
- 9. a) Ammonia is an important raw material for the production of nitrogenous fertilizers
 - i) Why ammonia gas is passed through quick lime (CaO)?
 - ii) The ammonia collector is placed inverted, Why?
- 10. What is liquor Ammonia and liquid Ammonia

CHEMISTRY

11. Sulphuric acid (H_2SO_4) is a chemical utmost important in industry

- i) Write any two uses of sulphuric acid.
- ii) Industrial preparation of sulphuric acid is known as _____
- 12. Using the material given below. Write an experiment to identify the sulphate salt,

Test Tube, Sodium Sulphate solution, Barium Chloride solution, Hydrochloric acid

13. Solubility of ammonia in water is very high.

When an Ammonia tanker leaks water is sprayed

- a) Write the name of the solution formed?
- b) What is the nature of the solution?

PART - 3

Answer any two of the following

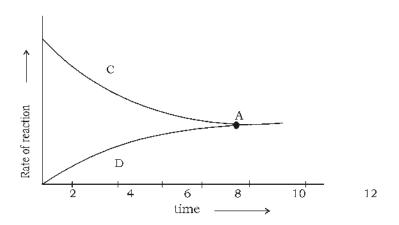
 $(2 \times 3=6)$

14. Different stages in the industrial preparation of H₂SO₄ is given below. Write the correct order.

$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$$

$$S + O_2 \rightarrow SO_2$$

$$II_2S_2O_7 + II_2O \rightarrow 2II_2SO_4$$


$$2SO_2 + O_2 \rightarrow 2SO_3$$

15.
$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3_{(g)}} + \text{heat}$$

- a) What happens to the volume when reactants change into products?
- b) What change should be done to the pressure to get more NH₃?
- c) NH₃ should be removed at regular intervals of time from the system. Give reason?

16.
$$2SO_2 + O_2 \Longrightarrow 2SO_3$$
 Heat

The graph of this chemical reaction is given below.

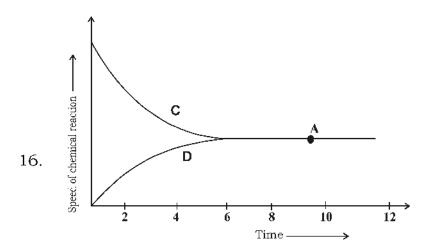
- a) Identify the reactions C and D and Write the chemical equation
- b) The catalyst V_2O_5 should be used in the beginning itself. Why?
- c) Draw the graph of the reaction if it takes place in the presence of the catalyst.

Answer keys

- 1. Closed system
- 2. No influence
- 3. NH₃
- 4. Harbour process
- 5. Barium chlorid
- 6. NH₄OH
- 7. Forward reaction

$$II_2 + I_2 \rightarrow 2III$$

backward react


$$2HI \to H_2 + I_2$$

- 8. Le Chatelier Principal
- 9. a) to remove moisture
 - b) Density of NH_3 is less than air
- 10. Liquor ammonia Liquid ammonia
- 11. Refining of petroleum, Manufcature of paonts (any other)

CHEMISTRY

- 12. Take a little sodium sulphate solution in a test tube and add three or four drops of Barium chloride solution to it, a white precipitate is formed. Add few drops of hydrochloric acid to this. Precipitate is insoluble in HCl
- Ammonium hydroxide 13. a.
 - Alkaline b.
- 1. $S + O_2 \rightarrow SO_2$ 2. $2SO_2 + O_2 \rightarrow 2SO_3$ 3. $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ 14.

 - 4. $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$
- decreases 15. a.
 - b. increase pressure
 - to increase the forward reaction c.

- C. forward reaction $2SO_2 + O_2 \rightarrow 2SO_3$ a.
 - D. backward reaction $2SO_3 \rightarrow 2SO_2 + O_2$
- b. Catalyst helps to reache equilibrium at a faster rate.

മാരു

In earlier classes you have studied about the properties of carbon and organic compounds .In this unit we discuss the IUPAC naming and isomerism of different types of organic compounds. After understanding the topic, you will be able to write the structural formula and IUPAC name of an organic compound if its molecular formula is given and vice versa.

After realising the fact that there is a chance of forming different types of compounds having the same molecular formula , the concept isomerism can be achieved .

- ❖ The valency of carbon is 4.
- Hydrocarbons are compounds containing hydrogen and carbon only
- Thee are compounds having single bond, double bond and triple bond between carbon atoms.
- Alkanes are open chain hydrocarbons in which the carbon atoms are joined together by single covalent bonds.
 - Alkanes are saturated hydrocarbons.
 - The general formula of alkanes is $C_n H_{2n+2}$
- A Series of compounds which can be represented by a general formula, having a common difference of CH₂ between successive members is called a homologous series. The members of homologous series show similarity in chemical properties. There is a regular gradation in their physical properties.
- Alkenes are hydrocarbons which contain at least one double bond between carbon atoms.

Alkenes are unsaturated hydrocarbons.

The general formula of alkenes is $C_n H_{2n}$

Alkynes are hydrocarbons which contain at least one triple bond between carbon atoms.

Alkynes are also unsaturated hydrocarbons.

The general formula of alkynes is $C_n H_{2n-2}$

- Organic compounds are named according to the rules and regulations of IUPAC (International Union of Pure and Applied Chemistry)
- Atom or group of atoms which can replace a hydrogen atom of a hydrocarbon are called functional groups. Each functional group imparts characteristic properties to organic compounds.
- The phenomenon in which two or more organic compounds having same molecular formula and show different physical and chemical properties is called isomerism.

Activity 1

The structural formula of some organic compounds are given below. Complete the table.

Structural Formula	Molecular Formula
CH ₃ -CH ₂ -CH ₃	
$\mathrm{CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_3}$	
$\mathrm{CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_3}$	
$\mathrm{CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_3}$	

Activity 2

Identify the class of the compound CH_3 - CH_2 - CH_2 - CH_3 from the following alternatives

(Alkane, Alkene, Alkyne, Cycloalkane)

Activity 3

Certain hints about an organic compound are given below.

- It is a hydrocarbon
- The main chain has six carbon atoms

- It has no branches
- All carbon atoms are connected by means of single bonds.
- (a) What is the structural formula of the compound?
- (b) What is the molecular formula of the compound?
- (c) Write the IUPAC name of the compound.

Write the structural formula of the compound having molecular formula C_4H_{10} .

Activity 5

Complete the following.

Structural formula	IUPAC Name
$CH_3 - CH_3$	
$CH_3 - CH_2 - CH_3$	
$CH_3 - CH_2 - CH_2 - CH_3$	
$\mathbf{CH}_{3} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{CH}_{3}$	
$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$	

Activity 6

The structure of an organic compound is given below.

$$\begin{array}{c} \operatorname{CH_3-CH_2-CH-CH_3} \\ | \\ \operatorname{CH_3} \end{array}$$

- (a) How many carbon atoms are present in the main chain of the compound?
- (b) What is the position number of the carbon which contains a branch?
- (c) What is the name of the branch?
- (d) Write the IUPAC name of the compound.

Activity 7

The structure of an organic compound is given below.

$$\begin{array}{c} \mathrm{CH_3-CH_2-CH-CH_3} \\ | \\ \mathrm{CH_2-CH_3} \end{array}$$

- (a) How many carbon atoms are present in the main chain of the compound?
- (b) What is the position number of the carbon which has the branch?
- (c) What is the name of the branch?
- (d) Write the IUPAC name of the compound.

The structure of an organic compound is given .

Given below are the IUPAC names of this compound, written by three students.

Student 1	2 – Ethyl butane	
Student 2	3 – Methyl pentane	
Student 3	2- Methyl butane	

Which of the above is correct. Justify

Activity 9

$$\begin{array}{c} \text{CII}_3\text{--}\text{CII}_2\text{--}\text{CII}_2\text{--}\text{CII}_2\text{--}\text{CII}_2\text{--}\text{CII}_3\\ |\\ \text{CII}_2\text{--}\text{CII}_2\text{--}\text{CII}_3 \end{array}$$

- (a) How many carbon atoms are present in the main chain of the compound?
- (b) What is the position of branch in the parent chain?
- (c) What is the name of the branch?
- (d) Write the IUPAC name of the compound .

Complete the table.

IUPAC Name	Structural Formula
2 – Methyl butane	
	CH ₃ -CH-CH ₂ -CH ₂ -CH ₂ -CH ₃ CH ₃
3 – Ethyl pentane	
	CH ₃ -CH ₂ -CH-CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₃

Activity 11

The structure of an organic compound is given below.

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3-CH_2-C-CH_2-CH_3} \\ | \\ \operatorname{CH_3} \end{array}$$

- (a) How many carbon atoms are present in the main chain of the compound?
- (b) What are the position of branches in the parent chain?
- (c) What are the name of the branches?
- (d) Write the IUPAC name of the compound.

Activity 12

Write the IUPAC names of the organic compounds given below.

(c)
$$CH_3$$
 CH_3 $|$ $|$ $CH_3-CH-CH-CH_2-CH-CH_3$ $|$ $|$ CH_3

(d)
$$\begin{array}{cccc} \text{CH}_3 & \text{CH}_3 \\ & | & | \\ \text{CH}_3\text{--CH--CH--CH--CH--CH}_2\text{--CH}_3 \\ & | & | \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

(e)
$$\begin{array}{cccc} \text{CH}_{3} & \text{CH}_{3} \\ & | & | \\ \text{CH}_{3} - \text{CH}_{2} - \text{C} - \text{CH}_{2} - \text{C} - \text{CH}_{2} - \text{CH}_{3} \\ & | & | \\ \text{CH}_{3} & \text{CH}_{3} \end{array}$$

Find (a),(b),(c) and (d) in the following table

CII ₂ =CII ₂	Ethene
(a)	Propene
CH ₃ -CH ₂ -CH=CH ₂	But-1-ene
CH ₃ -CH=CH-CH ₃	(b)
(c)	Pent-1-ene
CH ₃ -CH=CH-CH ₂ -CH ₃	(d)

Activity 14

$$CH_2$$
= CH - CH_2 - CH_3

- (a) Write the IUPAC name of the compound
- (b) What will be its IUPAC name if the double bond is in between the second and third carbon?

Activity 15

An organic compound is given.

$$CH_3-C \equiv C-CH_3$$

VIDYA JYOTHI Class 10 🕪

- (a) Write its molecular formula
- (b) To which type of the following does it belong? (Alkane, Alkene, Alkyne)
- (c) What is the IUPAC name of the compound?

Complete (a), (b), (c), (d), (e) and (f) suitably

CH≡CH	(a)
(b)	Propyne
CH ₃ -CH ₂ -C≡CH	(c)
$CH_3-C \equiv C-CH_3$	(d)
(e)	Hex-1-yne
$CH_3 - C = C - CH_2 - CH_3$	(f)

Functional Groups

- Hydrocarbons are organic compounds containing carbon and hydrogen atoms only.
- Atoms or atom groups which replaces hydrogen atom of an organic compound are called functional groups.

Activity 17

Identify the functional group of the compound CH₃-CH₂-CH₂-OH?

Activity 18

- (a) What is the name of the functional group of the compound given ?
- (b) What is the common name of the compounds with this functional group?
- (c) Write the IUPAC name of the compound.

Fill in the blanks as given in the example

Example CH₃-OH :

Methanol

CH₃-CH₉-OH : ----

Activity 20

Write the IUPAC names of the following compounds.

(d)
$$\text{CH}_3\text{-CH-CH}_2\text{-CH}_3$$

OH

Activity 21

Write the structural formula of the following

Pentan-2-ol

Pentan-3-ol

Activity 22

$$\begin{tabular}{ll} ${\rm CH_3-CH_2-CH_2-CH-CH_3} \\ & | \\ & {\rm OH} \end{tabular}$$

What is the IUPAC name of the compound?

Activity 23

Complete column B by writing the IUPAC names of the compounds given in column A.

Column A	Column B
CH ₃ -CH ₂ -CH ₂ -OH	
CH ₃ - CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH	

2. Halo Group

IUPAC Name: Haloalkane

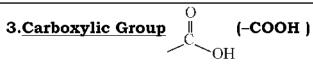
Activity 24

Write the IUPAC names of the following compounds.

Br

(d)
$$CH_3$$
- CH - CH_2 - CH_3

Ċl


C1

Cl Cl

Activity 25

Write the structural formula of the following compounds

- (a) 2,2,3,3-Tetra chloro butane
- (b) 2,2,3 -Tri bromo pentane

IUPAC Name : Alkane-e+oic acid → Alkanoic acid

Activity 26

Complete (a),(b),(c),(d),(e) suitably

H - COOH	(a)
(b)	Propanoic acid
CH ₃ -CH ₂ -CH ₂ -COOH	(c)

4. Alkoxy Group (O-R)

Ether IUPAC Name: Alkoxy alkane

Activity 27

35. Complete (a),(b),(c),(d),(e) suitably

CH ₃ -O-CH ₃	(a)
(b)	Ethoxy ethane
CH ₃ -O-CH ₂ -CH ₃	(e)
CH ₃ -CH ₂ -O-CH ₃	Methoxy ethane
(d)	Ethoxy butane
CH ₃ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₃	(e)

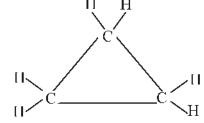
Cydic or Ring Compounds

Cydic or ring compounds are classified into two

- 1. Alicyclic compounds
- 2. Aromatic compounds

Alicyclic Hydrocarbons

They are cyclic hydrocarbons similar to open chain hydrocarbons like alkanes, alkenes and alkynes


Arometic Compounds

Cyclic compounds having their own aroma. Benzene is an aromatic compounds having industrial importance.

Activity 28

28. The structure of cydropopane is given below

Based on this given the structure of the following

- a) Cydobulane
- b) Cydonexane
- c) Cydobutene
- d) What are the molecular formula of these compounds?

Activity 29

(a). Identify the correct the structure of benzene from the following.

$$\begin{array}{c|c} H & C & C & H \\ C & C & C & H \\ & C & C & H \\ & & C & C & H \\ & & H \\ & & (a) & \end{array}$$

(b) Write the molecular formula of benzene.

ISOMERISM

Compounds having same molecular formula but different chemical and physical properties are called Isomers. The phenomenon is called Isomerism.

Activity 30

- (i) $CH_3 CH_2 O CH_3$
- (ii) CH₃- CH₂- CH₂- OH
- (a) Write the molecular formulae of the compounds given .
- (b) Write their IUPAC names
- (c) Which type of isomerism is shown by these compounds?

Activity 31

- (a) Write the molecular formula of the compound given.
- (b) What is the functional group present?
- (c) Write the IUPAC name.
- (d) Write the structural formula of any one isomer of the compound.

Activity 32

$$CH_3$$
-O- CH_3

- (a) Write the IUPAC name of the compound
- (b) Write the structural formula of any one isomer of the compound
- (c) Write the IUPAC name of the newly written isomer.
- (d) What type of isomerism is shown by these compounds?

Activity 33

The molecular formula of hydrocarbon is C_5H_{12} . Its structural formula is given below

$$CH_{3} \\ | \\ CH_{3}-CH-CH_{2}-CH_{3}$$

(a) Write the IUPAC name of the compound VIDYA IYOTHI Class 10 ▶

(b) Write the structural formula and IUPAC name of any two structural isomers of it.

Activity 34

Identify the pairs of isomers from the following table . Write the type of isomerism shown by each pair

(a) CH ₃ -CH-CH ₂ -CH ₃
CII ₃
(b) CH ₃ -CH ₂ -CH ₂ -Cl
(c) CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃
(d) CH ₃ -CH-CH ₃
Cl
(e) CH ₃ -O-CH ₃
(f) CH ₃ -CH ₂ -OH

Activity 35

The IUPAC names of two organic compounds are given below

- Ethoxy ethane
- Butan-1-ol
- (a) Which type of isomerism is shown by these compounds?
- (b) Write the structure of any position isomer of Butan -1-ol

Activity 36

Cyclohexane is an alicyclic hydrocarbon

- (a) Write the structure of Cyclohexane
- (b) Write the structural formula of any one alkene having the same molecluar formula of cyclohexane

ANSWER KEY

1.	Structural formula	Molecular formula
	CH ₃ -CH ₂ -CH ₃	C_3H_8
	$\mathrm{CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_3}$	C_5H_{12}
	$\mathrm{CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_3}$	C_8H_{18}
	$\mathrm{CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_3}$	C_9H_{20}

VIDYA JYOTHI Class 10 ▶

5.

2. Alkane

- 3. (a) CH_3 - CH_2 - CH_2 - CH_2 - CH_3
 - (b) C_6H_{14}
 - (c) Hexane
- 4. CH₃-CH₂-CH₂-CH₃

Structure	IUPAC Name
CH ₃ - CH ₃	Ethane
$CH_3 - CH_2 - CH_3$	Propane
$CH_3 - CH_2 - CH_2 - CH_3$	Butane
$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$	Pentane
$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$	Octane

- 6. (a) 4
 - (b) 2
 - (c) Methyl
 - (d) 2- Methyl butane
- 7. (a) 5
 - (b) 3
 - (c) Methyl
 - (d) 3- Methyl Pentane
- 8. (a) Student 2 is right. Longest carbon chain
 - (b) Correct structures of 2 Ethyl butane and 2- Methyl butane
- 9. (a) 8
 - (b) 4
 - (c) Ethyl
 - (d) 4- Ethyl octane
- 10. Correct structure
- 11. (a) 5
 - (b) 3,3
 - (c) Methyl, Methyl
 - (d) 3,3-Dimethyl pentane

- 12. (a) 2,4-Dimethyl pentane
 - (b) 2,2-Dimethyl pentane
 - (c) 2, 3 Dimethyl hexane
 - (d) 2,3,4,5-Tetra methyl heptane
 - (e) 3,3,5,5- Tetra methyl heptane
- 13. (a) CH_3 -CH= CH_2
 - (b) But-2-ene
 - (c) CH_2 =CH- CH_2 - CH_2 - CH_3 / CH_3 - CH_2 - CH_2 -CH= CH_2
 - (d)Pent-2-ene
- 14. (a) But-1-ene
 - (b) But-2-ene
- 15. (a) C_4H_6
 - (b) Alkyne
 - (c) But-2-yne
- 16. (a) Ethyne
 - (b) $CH_3 C \equiv CH$
 - (c) But-1-yne
 - (d) But-2-yne
 - (e) $CH = C CH_2 CH_2 CH_3 / CH_3 CH_2 CH_2 C = CH$
 - (f) Pent-2-yne

Functional Groups

- 17. Hydroxyl group
- 18. (a) Hydroxyl group
 - (b) Alcohols
 - (c) Propan-2-ol

19. CH₃-CH₂-OH: Ethanol

- 20. (a) Propan-1-ol
 - (b) Propan-2-ol
 - (c) Butan-1-ol
 - (d) Butan-2-ol
 - (e) Butan-2-ol

- 22. Pentan-2-ol
- 23. **Column A Column B**CH₃-CH₂-CH₂-CH₂-OH Butan-1-ol

 CH₃-CH₂-CH₂-CH₂-CH₂-OH Hexan-1-ol
- 24. (a) 1- Chloro propane
 - (b) 2- Bromo propane
 - (c) 1- Chloro butane
 - (d) 2- Chloro butane
 - (e) 2,3 Dichloro butane
 - (f) 2,2 Dichloro butane
 - (g) Bromo butane

25.

26.	НСООН	Methanoic acid	
	CII ₃ -CII ₂ -COOII	Propanoic acid	
	CH ₃ -CH ₂ -CH ₂ -COOH	Butanoic acid	

27.	CH ₃ -O-CH ₃	Methoxy methane	
	CH ₃ -CH ₂ -O-CH ₂ -CH ₃	Ethoxy ethane	
	CH ₃ -O-CH ₂ -CH ₃	Methoxy ethane	
	CH ₃ -CH ₂ -O-CH ₃	Methoxy ethane	
	CH ₃ -CH ₂ -O-CH ₂ -CH ₂ -CH ₂ -CH ₃		
	Or		
	CH ₃ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₃	Ethoxy butane	
	CH ₃ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₃	Ethoxy butane	

c) Cyclobutene

29.

Molecular formula

- a) Cyclobutane C_4H_8
- b) Cyclohexane C₆H₁₂
- c) Cyclobutene C₄H₆

a)
$$\begin{array}{c} H \\ C \\ C \\ H \end{array}$$

b) C₆H₆

ISOMERISM

- 30. (a) C_3H_8O
 - (b) (i) Methoxy ethane (ii) Propan 1 ol
 - (c) Functional isomerism
- 31. $(a)C_3H_7C1$
 - (b) Cl (Chloro)
 - (c) 2- Chloro propane
 - (d) CH₃-CH₂-CH₂-Cl
- 32. (a) Methoxy methane
 - (b) CH₃-CH₂-OH
 - (c) Ethanol
 - (d) Functional isomerism
- 33. (a) 2-Methyl butane
 - (b) Correct structure and IUPAC name

34. Chain isomers

(a)	CH ₃ -CH-CH ₂ -CH ₃
	CH ₃

- (c) CH₃-CH₂-CH₂-CH₂-CH₃
- **Position isomers**

(b) CH_3 - CH_2 - CH_2 -CI

Fun	ction	ıal :	isomers

- (I) CH₃-CH₂-OH
- (e) CH₃-O-CH₃
- 35. (a) Functional isomerism
 - (b) CH,-CH,-CH-CH,

OH

36. (a)

(b) $CH_3-CH_2-CH_2-CH_2-CH=CH_2$

(Or any other position isomer of hexene)

UNIT TEST

Time: 40 minutes

Score: 20

(Questions 1 and 2 are compulsory. One score each)

1. Which of the following can be the molecular formula of an alkene

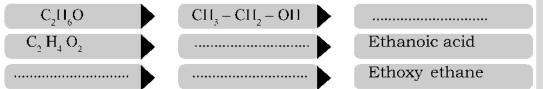
$$(C_3H_4, C_3H_6, C_3H_8)$$

2. The structure of a hydrocarbon is given below

How many carbon atoms are present in the longest carbon chain of this compound?

(Write any two answers for questions three to five. Two scores each)

3.


$$\begin{array}{ccc} \mathrm{CH_3} & \mathrm{CH_3} \\ | & | \\ \mathrm{CH_3-CH-CH-CH-CH_2-CH_2-CH_3} \\ | & | \\ \mathrm{CH_3} \end{array}$$

- (a) Which is the branch of the compound?
- (b) Write the IUPAC name of the compound.
- **4.** (CH₃-CH₂-O-CH₃,CH₃-CH₂-CHO,CH₃-CH₂-CH₂-OH) Write the IUPAC names of the isomer pairs from the compounds given above.
- **5.** Complete the following table.

C ₂ H ₆ O	(a)	Ethanol
C_3H_7CI	$\mathrm{CH_3} ext{-}\mathrm{CH_2} ext{-}\mathrm{CH_2} ext{-}\mathrm{C}l$	(b)

(Write any two answers for questions six to eight . Three scores each)

6. Fill in the blanks.

- 7. Write the structures of the position isomers of the compound CH_3 - CH_2 - CH_2 - CH_2 - CH_2 -OH
- 8. Write any two similarities and one difference between CII₃-CII₇-CII₇-OII and CII₃-O-CII₇-CII₅

(Answer any two for the questions from nine to eleven . Four scores each)

- 9. Write the structures of the all isomers having molecular formula C_4H_{10}
- 10. The structural formulae of some organic compounds are given below.

(a)
$$CH_3$$
- CH_2 - CH_2 - CH_3

- (i) Identify the isomer pairs
- (ii) Write the type of isomerism shown by them.
- 11. The structure of an organic compound is given

$$\begin{array}{c} \text{CH}_3\text{--CH}_2\text{--CH}\text{--CH}_2\text{--CH}_3\\ |\\ \text{CH}_3 \end{array}$$

- (a) How many carbon atoms are present in the main chain of it?
- (b) What is the position number of the carbon atom to which the branch is attached?
- (c) What is the name of the branch?
- (d) Write the IUPAC name of the compound.

Answer Key

- **1.** C₃H₆
- **2**. 6
- **3** (a) Methyl

- (b) 2, 3, 4 Trimethyl heptane
- **4.** CH_3 - CH_2 -O- CH_3 Methoxy ethane CH_3 - CH_2 - CH_2 -OH Propan-1-ol

(Functional isomers)

- **5.** C_2H_6O CH_3-CH_2-OH Ethanol
 - C_3H_7Cl CH_3-CH_2-Cl 1- Chloro propane

6.	C ₂ H ₆ O	$CH_3 - CH_2 - OH$	Ethanol
	$C_2 H_4 O_2$	CH ₃ – COOH	Ethanoic acid
	C ₄ H ₁₀ O	CH ₃ - CH ₂ - O- CH ₂ - CH ₃	Ethoxy ethane

7. Pentan-2-ol

$$CII_3 - CII_2 - CII_2 - CII - CII_3$$

$$OH$$

$$CH_3 - CH_2 - CH - CH_2 - CH_3$$

- 8. Similarities
 - 3 Carbon atoms
 - 8 Hydrogen atoms

One Oxygen atom

Difference

Difference functional groups

9.
$$C_4\Pi_{10}$$

 $CH_3-CH_2-CH_2-CH_3$

$$CH_3 - CH - CH_3 \\ CH_3$$

- 10. Isomer pairs
 - a) i. a, d
 - ii. b, c
 - b) a, d Chain Isomers b, c - Functional Isomers
- **11.** (a) 4
 - (b) 3
 - (c) Methyl
 - (d) 3-Methyl pentane

There are a lot of organic compounds found around us such as medicines plastics, perfumes, soaps, detergents etc. New organic compounds are also produced day by day. These are obtained by different chemical reactions. Let us familiarise with some of the basic chemical reactions in this unit.

Different Chemical Reactions of Organic Compounds

At a Glance

Diffe	Different Chemical Reactions of Organic Compounds			
1	2	3	4	5
Substitution	Addition	Polymeri	Thermal	Combustion
Reaction	Reaction	sation	Cracking	
	It takes place	Monomers	Hydrocarbons	Hydrocarbons
	mostly in	combine	with high molecular	combine
	to form polymers	mass is heated	in	with oxygen
	compounds.	The products	the absence of air	forming CO ₂
An atom is		formed are	undergo	and H_2O .
replaced from		depending on	decomposition	Itisan exothermic
the compound	By the effect of	temperature,	to form hydrocarbons	reaction. So
by another	this reaction	pressure,	with lower	hydrocarbons
atom or group	triple bonded		molecular mass.	are used as
of atoms.	Compounds	nature of		fuels.
	change in to	hydrocarbon.		
	double bonded			
	and forms	Products formed		
	Saturated	are saturated		
	compounds.	and unsaturated		
	(Single bonded)	compounds.		

CHEMISTRY

Activity 1

Write the substitution reaction products obtained when ethane (C_2H_6) react with chlorine.

i)
$$C_2H_6 + Cl_2 \rightarrow C_2H_5Cl + HCl$$

ii)
$$C_2H_5 - Cl + Cl_2 \rightarrow + HCl$$

iii) ____+
$$Cl_2 \rightarrow C_2H_3Cl_3 + HCl$$

iv)
$$C_2H_3Cl_2 + Cl_2 \rightarrow ___ + ____$$

v)
$$\underline{\hspace{1cm}} + Cl_2 \rightarrow C_2HCl_5 + HCl$$

$$vi$$
) ____+ $Cl_2 \rightarrow$ ___+___

Activity 2

Fill up the following.

a)
$$C_3H_8 + Cl_2 \rightarrow _{---} + _{---}$$

b)
$$C_3II_7 - Cl + Cl_2 \rightarrow ___+$$

c)
$$__+Cl_2 \rightarrow C_3H_5Cl_3 + HCl$$

$$d) C_3II_5Cl_3 + Cl_2 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$e)$$
 ____+ $Cl_2 \rightarrow C_3II_3Cl_5 + IICI$

$$f) C_3H_3Cl_5 + Cl_2 \rightarrow ___+$$

$$g) \ \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \to C_3 IICl_7 + IICl$$

$$h)$$
 ____+ ___ \rightarrow ____+ HCl

Activity 3

Write the products.

a)
$$CH_3 - CH = CH_2 + H_2 \rightarrow$$

$$b) CH_3 - CH = CH_2 + Cl_2 \rightarrow \underline{\hspace{1cm}}$$

c)
$$CH \equiv CH + Cl_2 \rightarrow$$

d)
$$CH \equiv CH + HCl \rightarrow$$

Complete the table.

Monomer	Polymer
$CH_2 = CH_2$	
	$\left[\text{CH}_2 - \frac{CH}{\text{CH}_3} \right]_n$
$CH_2 = CH - Cl$	
$CF_2 = CF_2$	

Activity 5

Complete the equation.

i)
$$CH_3 - CH_2 - CH_3$$
 Heat $CH_4 +$

ii)
$$CH_3 - CH_2 - CH_2 - CH_3$$
 Heat $CH_2 = CH_2 +$

iii)
$$C_8H_{18}$$
 Heat C_3H_6+

iv)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH_$$

Activity 6

Fill up the blanks.

$$C_2H_4 + 3O_2 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$C_3II_8 + 5O_2 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

Activity 7

Complete the table.

Chemical reaction	Product	IUPAC name of product
$CII_2 = CII_2 + Cl_2$		
$CII_2 = CII_2 + IICI$		
$CII_2 = CII - CII_3 + II_2$		
$CH \equiv CH + H_2$		

Fill in the blanks.

Monomer	Polymer	Use
Vinylchloride		
Ethene	Polythene	
Isoprene	Natural Rubber (poly isoprene)	
	Teflon	

Activity 9

Match the following appropriately.

Reactants	Products	Name of the reaction
$CH \equiv CH + H_2$	$CH_3 - CH_2 - Cl$	Combustion
$nCH_2 = CH_2$	$CH_3 - CH_3 + CH_2 = CH_2$	Polymerisation
$CH_3 - CH_3 + Cl_2$	$\left[CH_2 - CH_2\right]_n$	Addition
$CH_3 - CH_2 - CH_2 - CH_3$	$CH_2 = CH_2$	Substitution Reaction
$C_2H_4+O_2$	$2CO_2 + 2H_2O$	Thermal Cracking

Activity 10

Complete the table.

Reactants	Products
CH ₄ +	$CO_2 + 2II_2O$
$CII \equiv CII + II_2$	
CII_3Cl+Cl_2	+ IICl
+ II ₂	$CII_3 - CII_3$
$CII_2 = CII - CII_3 + II_2$	

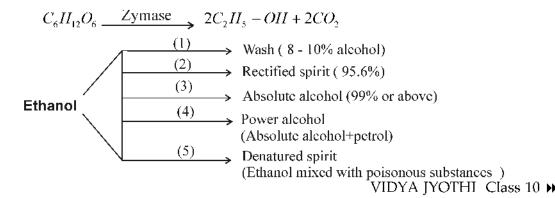
The important component in LPG is butane. Write the balanced chemical equation for the complete combustion of butane.

Activity 12

Complete the table

Condensed	Structural	IUPAC	Common Name
formula	formula	Name	
II – COOII	OH OH		
	O C OH	Ethanic acid	
CH_3 $-CH_2$ $-COOH$		Propanoic acid	

Some Important Organic Compounds Alcohols (Functional group - OH)


Industrial preparation of methanol $(CH_3 - OH)$

$$CO + 2H_2 \xrightarrow{\text{High Temperature}} CH_3 - OH$$
 High pressure

Industrial preparation of ethanol (C_2H_5 - OH)

Ethanol is manufactured by fermenting diluted molasses by adding yeast.

$$C_{12}II_{22}O_{11} + II_2O$$
 Invertase $C_6II_{12}O_6 + C_6II_{12}O_6$
Sucrose (Sugar) Glucose Fructose

Carboxylic Acids (Functional group - COOH)

Ethanoic acid ($CH_3 - COOH$)

Industrial preparation of ethanoic acid.

$$CH_3 - OH + CO \xrightarrow{\text{Catalyst}} CH_3 - COOH$$
Methanol Ethanoic acid

5 - 8 % ethanoic acid - Vinegar

Carboxylic acid + Alcohol $\xrightarrow{ConH_2SO_1}$ Ester + H_2O

Activity 13

The chemical reaction of the industrial production of ethanol is given. Complete the reaction.

i)
$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{Invertase} C_6H_{12}O_6 + \dots$$

ii)
$$C_6H_{12}O_6 \xrightarrow{Zymase} 2 \xrightarrow{} + 2CO_2$$

Activity 14

Two balanced chemical equations in related to the manufacture of ethanol are given.

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{(A)} C_6H_{12}O_6 + C_6H_{12}O_6 \xrightarrow{(B)} 2C_2H_5 - OH + 2CO_2$$

- a) Write the names of (A) and (B)
- b) Name the isomer of Glucose?
- c) What is the name of the ethanol produced by this method?
- d) How is rectified spirit obtained from 8 to 10% solution of alcohol?

Activity 15

Match the following.

Wash	Ethanol mixed with poisonous Substance
Rectified spirit	8 - 10% ethanol
Absolute alcohol	95.6% ethanol
Denatured spirit	99% ethanol
Power alcohol	Motor fuel

Activity 16

Complete the chemical equations.

a)
$$CH_3 - COOH + HO - H_2C - CH_3 \xrightarrow{\text{H}_2\text{SO}_4} + \xrightarrow{\text{+}}$$

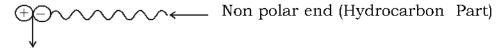
b)
$$\underline{\hspace{1cm}} + \underline{\hspace{1cm}} \underline{\hspace{1cm}} H_2SO_4 \rightarrow CH_3 - CH_2 - COO - CH_2 - CH_3 + H_2O$$

$$CH_3 - CH_2 - COOH + CH_3 - CH_2 - OH \rightarrow CH_3CH_2 - COO - CH_2 - CH_3 + H_2O$$

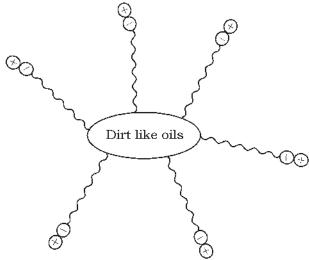
- a) Write the names of the products formed by the above reaction.
- b) What is the importance of this substance in our daily life.?

Activity 18

Write the products.


- i) CH₃-OH+CO Catalyst
- $ii) \ CO + 2H_2 \xrightarrow{\text{High Temperature}} \underbrace{\text{High pressure}}$

Cleansing Action of Soap



At a glance

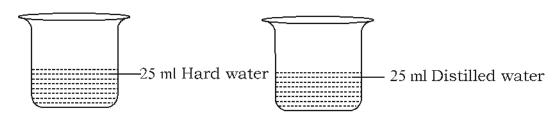
- * Oils and fats are esters formed by the combination of glycerol and some fatty acids. Soap is the salt formed when oils and fats react with alkalies like Sodium hydroxide and Potasium hydroxide.
- * Soap

Polar End (lonic Part)

* Detergents are made from hydrocarbons obtained from coal and petroleum. Most detergents are salts of Sulphonic acids.

Activity 19

Which end of soap dissolves in water when it romoves dirt?


Activity 20

Which salt doesn't cause hardness of water.

(NaCl, MgC
$$l_2$$
, CaC l_2 , Mg(HCO $_3$) $_2$

Activity 21

Analyse the given picture

Add same quantity of soap solution to both beakers and shake well. Which beaker will have more foam and why?

Activity- 22

Detergents are more effective than soaps in hard water. why?

Activity- 23

List out the merits and demeritsof detergents

Answer key

$$1, \quad ii)C_2H_4 - Cl_2$$

$$iii)C_2H_4-Cl_2$$

$$iv$$
) $C_2H_2-Cl_4$, HCl

$$v)C_2H_2-CI_4$$

$$vi)C_2HCl_5, C_2Cl_6, HCl$$

2.
$$a$$
) C_3H_7-Cl , HCl

$$b)C_3H_6-Cl_2,HCl$$

$$c)C_3H_6-Cl_2$$

$$d)HCI$$
, $C_3H_4-Cl_4$

$$e$$
) $C_3H_4-CI_4$

$$f$$
) $C_3H_2 - Cl_6$, HCl

$$g(C_3H_2 - Cl_6, Cl_2)$$

$$h$$
) C_3HCl_7 , Cl_2 , C_3Cl_8

3.
$$a)CH_3 - CH_2 - CH_3$$

$$b)CH_3 - CH_2 - CH_2$$

$$CI - CI$$

$$c) CH = CH$$

$$Cl Cl$$

$$d$$
) $CH_2 = CH - Cl$

4.
$$[CH_2 - CH_2]_n$$

$$CII_2 = CII - CII_3$$

$$\begin{bmatrix} CH_2 - CH \\ & \downarrow \\ Cl \end{bmatrix}_n$$

$$\frac{1}{7}CF_2 - CF_2$$

5. (i)
$$CH_2 = CH_2$$

(ii)
$$CH_3 - CH_3$$

(iii)
$$C_5H_{12}$$

6.
$$2CO_2, 2H_2O$$

$$3CO_2, 4H_2O$$

7.
$$CH_2 - CH_2$$
 (1, 2 - dichloro ethane)

$$CII_3 - CII_2 - Cl$$
 (Chloro ethane)

$$CII_3 - CII_2 - CII_3$$
 (Propane)

$$CII_2 = CII_2$$
 (Ethene)

9.

8. Polyvinyl chloride, Manufacture of pipes and taps.
Polythene, manufacture of covers and bags.
For the manufacturing of tubes, tyres, belt, hoses,
Tetra Fluroethene, Coating on the inner surface of non - stick cook ware.

$CH \equiv CH + H_2$	$CH_2 = CH_2$	Addition
$nCH_2 = CH_2$		Polymerisation
$CH_3 - CH_3 + Cl_2$	$CH_3 - CH_2 - Cl$	Substitution reaction
$CH_3 - CH_2 - CH_2 - CH_3$	$CH_3 - CH_3 +$	Thermal cracking
	$CH_2 = CH_2$	
$C_2H_4+O_2$	$2CO_2 + 2H_2O$	Combustion

10.
$$2O_2$$
, $CII_2 = CII_2$
 $CII_2 - CI_2$, $CII_2 = CII_2$
 $CII_3 - CII_2 - CII_3$

11.
$$2C_4II_{10} + 13O_2 \rightarrow 8CO_2 + 10II_2O$$

12.

Condensed	Structural	IUPAC	Common Name
formula	formula	Name	
II – COOII	OH OH	Methanoic acid	Formic acid
CH ₃ – COOH	O H,C OH	Ethanic acid	Acetic acid
CH_3 $-CH_2$ $-COOH$	CII ₅ -CII ₂ -C -OH	Propanoic acid	propionic acid

13.
$$1)C_6H_{12}O_6$$

2) $2C_2H_5-OH$

- 14. a) A Invertase B Zymase
 - b) Fructose

- c) Wash
- d) Fractional distillation
- 15. Wash 8-10% ethanol
 Rectified spirit 95.6% ethanol
 Absolute alcohol 99% ethanol

Denatured spirit - Ethanol mixed with poisonous

substance

Power alcohol - Motor Fuel

16. a)
$$CH_3 - COO - CH_2 - CH_3$$
, H_2O

b)
$$CH_3 - CH_2 - CH_2 - COOH, CH_3 - CH_2 - OH$$

- 17. a) Ethyl propanoate
 - b) Esters have a pleasant fruity and floral smell. So they are used for making synthetic flavours.
- 18. i) $CH_3 COOH$
 - ii) $CH_3 OH$
- 19. Polar End (ionic end)
- 20. NaCl
- 21. Second beaker

Soap, doesn't lather well in hard water. Hardness of water is due to the dissolved calcium and magnesium salts in it. These salts react with soap to form insoluble compounds.

22. Detergents do not give insoluble compounds on reaction with calcium and magnesium salts dissolved in hard water.

23.

Merits	Demerits
Effective in hard water too	Micro organisms can not decompose the components of detergents.
Do not forms insoluble Compounds.	The detergents which contain phosphates increses the growth of algae and hence limits the quantity of oxygen. This leads to the distruction of aquatic life
More convenient to use	Excessive use of detergents causes environmental problems

Unit test

Score: 20

Duration: 40 mts

Answer any four from question 1 to 6.

1. Which one among the following hydrocarbon molecules undergo polymerisation?

$$C_2H_6, C_4H_{10}, C_2H_4, C_6H_{14}$$

2. $C_7H_{16} + Cl_2 \rightarrow C_7H_{15} - Cl + HCl$

To which category does the reaction belong?
(Addition reaction, Substitution reaction, Thermal Cracking)

3. Complete the chemical equation.

$$CH_3 - CH_2 - CH_3 \xrightarrow{\text{Heat}} CH_4 + \underline{\hspace{1cm}}$$

- 4. Structural formula of an organic compound is given.
 - o a) Find the functional group from this formula b) Identify the compound

 OH

 OH
- 5. Name the monomer of the polymer teflon which is used to coat inner surface of non-stick cooking utensils?
- 6. Name the carboxylic acid and alcohol required to produce the ester $CH_3 COO CH_3$ $(4 \times 1 = 4)$

Answer any five from questions 7 to 13

7. a) Find A, B and C from the following reactions.

(i)
$$CH_3 - CH_2 - CH_3$$
 Thermal cracking $CH_4 +$ (A)

(ii)
$$X + H_2$$
 Addition reaction (B)

$$(iii) Y + Cl_2 \longrightarrow (C)$$

- (b) Which type of reaction is (iii)
- 8. Some chemical reactions are given.

(i)
$$CH \equiv CH + HCl \rightarrow \underline{A}$$

$$(ii)\underline{A}$$
 Polymerisation \underline{B}

- a) Find A and B
- b) Write any one use of B.
- 9. Ethanol is an industrially important compound. How is ethanol manufactured industrially? Write any two uses of ethanol.

$$C_{12}H_{22}O_{11} + H_2O$$
 Invertase $C_6H_{12}O_6 + \underline{A}$

A Zymase
$$2B+2CQ$$

- 11. Excessive use of detergent causes environmental problems. Do yo agree with this statement? Justify.
- 12. a. Butane is one of the compounds usually obtained by the thermal cracking of heptane. Write the chemical equation of this reaction.
 - b. Write the balanced chemical equation for the combustian of butane.
- 13. Write any one use of the following.
 - a) Polythene b) Teflon c) Ethanoic acid d) Power alcohol

Answer any two from the questions 14 to 16

14. Analyse the following reactions and answer questions given below.

i)
$$CO + 2H_2$$
 Catalyst \underline{A}

ii)
$$\underline{A} + CO$$
 Catalyst \underline{B}

iii)
$$\underline{A} + \underline{B} \longrightarrow \underline{C}$$

- a) Find A, B and C?
- b) Write the IUPC name of compound C.
- 15. a) Select the compound from the following that undergoes addition reaction.

$$C_2H_6, C_2H_4, C_3H_8$$

- b) Write the balanced chemical equation of the addition reaction of that compound with *HCl*.
- c) Write the balanced chemical equation of polymerisation of the compound C_2II_4 .
- 16. a) Find the names of carboxylic acid and alcohol required to prepare an ester $CH_3 COO CH_2 CH_2 CH_3$.
 - b) Write the balanced chemical equation of the above reaction.
 - c) What are the characteristics of these type of compounds.

 $(2 \times 3 = 6)$

ANSWER KEY

- C_2H_4
- Substitution reaction 2.
- $3. \qquad CH_2 = CH_2$
- a) COOH (Carboxylic acid)
 - b) Propanoic acid (Propionic acid)
- 5. Tetra fluroethene
- CH_3 COOH6.

$$CH_3 - OH$$

- 7. a) i) A. $CII_2 = CII_2$ b) substitution

ii) B.
$$CH_3 - CH_3$$

8. *a*) A)
$$CH_2 = CH - CI$$

B)
$$\left[CH_2 - CH\right]_{CI}$$

- b) Used in the manufacture of pipes and taps
- 9. By the fermentation of molasses. Any two uses.
- 10. A) $C_6H_{12}O_6$

B)
$$C_2H_5 - OH$$

11. Excssive use of detergents causes environmental problems. The micro organisms in water cannot decompose the components of detergents. The detergents which contain phosphate increases the growth of algae and limits the quantity of oxygen. It causes the destruction of aquatic organisms.

12. a.
$$C_7 H_{16} \to C_4 H_{10} + C_3 H_6$$
 OR

$$CII_3 - CII_2 - CII_2 - CII_2 - CII_2 - CII_2 - CII_3 \rightarrow CH_3 - CH_2 - CH_2 - CH_3 + CH_3 - CH = CH_2$$

b.
$$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$$

- 13. 1. Polythene Covers, bags
 - 2. Teflon non stick utensils
 - 3. Ethanoic acid Vinegar
 - 4. Power alcohol Fuel

14. a. A.
$$CH_3 - OH$$

B.
$$CH_3 - COOH$$

C.
$$CH_3 - COO - CH_3$$

- b) Methyl ethanoate
- 15. $a)C_{2}H_{4}$

$$b)CH_2 = CH_2 + HCI \rightarrow CH_3 - CH_2 - CI$$

$$c)nCH_2 = CH_2 \rightarrow \{CH_2 - CH_2\}_n$$

16. a) $CH_3 - COOH$

$$CH_3 - CH_2 - CH_2 - OH$$

b)
$$CH_3 - COOH + CH_3 - CH_2 - CH_2 - OH$$

$$\xrightarrow{H_2SO_4} CH_3 - COO - CH_2 - CH_2 - CH_3 + H_2O$$

c) Pleasant fruity and floral smell.

മാരു

CHEMISTRY

SAMPLE QUESTION PAPER

- 1. 15 minutes is given as cool off time
- 2. Answer the questions as per the instructions given.

Answer any four from 1 to 5

 $(1 \times 4 = 4)$

- 1. Which of the following subshell is not possible 4s, 6p, 2d, 5f
- 2. 2 moles of a solute is present in 2 litre of the solution? What is the molarity of the solution?
- 3. Write the product $SO_2 + Cl_2$ Sunlight
- 4. Which of the following metal does not displace hydrogen from dilute acids?

Fe, Ni, Cu, Al

5. Name a compound used for imparting blue colour to glass.

Answer any four question from 6 - 10

 $(2 \times 4 = 8)$

- 6. Find out the carboxylic acid and the alcohol required to prepare the ester CH₃CH₂COOCH₃
- 7. Write the functional group isomer and IUPAC name of the compound CH₃-CH₂-CH₂-OH.
- 8. ZnCO₃ and ZnS are two ores of zinc.
 - a) Which of these ores is converted to its oxide by calcination?
 - b) How roasting differs from calcination?
- 9. The subshell electronic configuration of element X is given below. Find out the period and group of X.

 $1\,s^2\,2\,s^2\,2\,p^5$

- 10. Calculate the mass of the following in grams.
 - a) One nitrogen atom
 - b) One nitrogen molecule

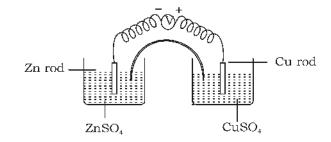
(Atomic mass of nitrogen = 14)

Answer any four from 11 - 15.

 $(4 \times 3 = 12)$

11. Match suitably.

Cement	reduce body temperature	Anthracite
Coal	mixture of aluminates	Paracetamol
	and silicates	
Antipyretic	Carbonisation	Gypsum


12. i)
$$CH_2 = CH_2 + HCl \rightarrow A$$

ii)
$$n \in H_2 = {C \choose l} \xrightarrow{\text{Heat}} B$$

- a) Identify A and B
- b) What type of chemical reaction is (i)?

13.
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

- a) How many moles of CH₄ is necessary to form 2 mol H₉O?
- b) Calculate the volume of CO₂ at STP produced by the complete combustion of 160g CH₄? (At.mass C=12, H=1 O=16)

14.

- a) Which electrode acts as anode?
- b) From which electrode does electron flow starts?
- c) Write the equation of the cell reaction
- 15. The subshell electron configuration of Mn is given.

- a) What is the atomic number of the element?
- b) What is the oxidation state of Mn in MnO₂?
- c) Write the subshell electronic configuration of the ion formed.

Answer any four questions from 16 to 20.
$$(4 \times 4 = 16)$$

$$\mathrm{CH_3}$$
 | $\mathrm{CH_3}$ - $\mathrm{CH_2}$ - CH - CH - $\mathrm{CH_3}$ | $\mathrm{CH_2}$ - $\mathrm{CH_3}$

- a) What is the number of carbon atoms in the main chain of the compound?
- b) Write the IUPAC name of the compound.
- c) Write the structural formula of the compound 2 methyl propan 2 ol
- d) $CH_4 + Cl_2 \rightarrow \dots + HCl$
- 17. $N_2 + 3H_2 \rightleftharpoons 2NH_3 + Heat$
 - a) What happens to the speed of forward reaction if the temperature is increased?
 - b) What change should be made in pressure to get more NH₃?
 - c) Which is the catalyst used in this reaction? What is its function?
- 18. The steps involved in the concentration of bauxite are shown in the flow chart. Fill up the missing parts.
 - a) Bauxite Hot NaOH Solution

Impurities are filtered and Al(OH)₃ is added

to the solution \rightarrow

Precipitate is filtered and heated Al₂O₃

- b) Write the equation of the reaction taking place at the cathode in the electrolysis of alumina.
- c) Why is cryolite added in the process?
- 19. a) Write the balanced equation of the chemical reaction between marble and hydrochloric acid
 - b) What will happen to the speed of chemical reaction if powdered marble is used instead of marble pieces? Why?
- 20. The decreasing order of reactivity of certain metals is given below Mg >Fe>Cu>Ag
 - a) What will happen if a Mg rod is placed in cupric chloride solution? give the reason?
 - b) Which are the products obtained at the anode and cathode if cupric chloride is electrolysed?