

## DIET ALAPPUZHA <br> NIRAKATHITR 2021

| Sl. Number | Index | Page <br> Number |
| :---: | :---: | :---: |
| 1 | Introduction | 3 |
| 2 | Arithmetic Sequences | 5 |
| 3 | Second Degree Equations | 8 |
| 4 | Circles And Tangents | 11 |
| 5 | Statistics | 24 |
| 6 | Mathematics of Chance | 27 |
| 7 | Trigonometry | 30 |
| 8 | Solids | 34 |
| 9 | Co- Ordinates | 37 |
| 10 | Polynomials | 46 |
| 11 | Geometry And Algebra | 50 |
| 12 | Constructions | 60 |
| 13 | Focus Area | 66 |
| 14 | Structure of SSLC Maths Question Paper | 69 |

## （6）刀ดவ。

## 1

























| カ1றி ஹறுறிகி <br>  |  <br>  |
| :---: | :---: |
| wers（mbl |  |
|  |  พఱ8ั （10）】뎍 |

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## 







## DIET ALAPPUZHA 2021

## ARITHMETIC SEQUENCE

## POINTS TO REMEMBER

1. $\mathrm{n}^{\text {th }}$ term $=a n+b$
$a=$ common difference, $b=$ first term - common difference
2. Common Difference $=\frac{\text { Difference betweentwoterms }}{\text { Difference of its positions }}$
3. General form of an Arithmetic Sequence

$$
f, f+d, f+2 d, \ldots \ldots \ldots \ldots . f+(n-1) d
$$

4. Sum of $n$ terms
$S_{n}=\frac{n}{2}(2 a+(n-1) d)$
$S_{n}=\frac{n}{2} \quad\left(x_{1}+x_{n}\right)$
5. Sum of first $n$ natural numbers $S_{n}=\frac{1}{2} n(n+1)$
6. If the number of terms in an arithmetic sequence is odd, then sum of terms = middle term x number of terms
7. Sum of consecutive ' $n$ ' odd numbers from one $=n^{2}$
8. Sum of consecutive ' $n$ ' even numbers from two $=n(n+1)$

Questions:
I. Choose the correct answer and fill the blanks. 1 score each
1.The first term and common difference of an arithmetic sequence are equal. If its first term is 5 , then its $6^{\text {th }}$ term is $\qquad$
2.The algebraic form of an arithmetic sequence is $5-3 n$. Its common difference is $\qquad$
3. If $1+2+3+\ldots+10=55$, then $2+4+6+\ldots+20=\ldots \ldots .(55,110,550,100)$
4. The $13^{\text {th }}$ term of an arithmetic sequence is 25 . Then the sum of first 25 terms of this sequence is $\qquad$ . $625,325,100,450$ )
5. The $10^{\text {th }}$ and $15^{\text {th }}$ terms of an arithmetic sequence are 60 and 80 respectively, its common difference is $\qquad$ ( $20,10,15,4$ )
6. The algebraic form of an arithmetic sequence is $\frac{1}{2} n+\frac{1}{3}$, its first term is $\qquad$ $\left(\frac{1}{2}, \frac{1}{3}, \frac{5}{6}, \frac{2}{6}\right)$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

7. The reminder when each term of the arithmetic sequence $3 n+1$ is divided by 3 is ......... $(3,1,0,5)$
II. Answer the following .2 scores each.
1.The algebraic form of an arithmetic sequence is $5 n-3$.
a) What is its $10^{\text {th }}$ term?
b) Is 98 a term in this sequence?
2.Consider the arithmetic sequence $4,7,10, \ldots$
a) Write its algebraic form.
b) What is its $25^{\text {th }}$ term?
3.Consider the arithmetic sequence 3,7,11,...
a) Write its algebraic form?
b) Is 101 a term in this sequence?
8. Consider the arithmetic sequence $-98,-95,-92, \ldots$.
a) What is its common difference?
b)Write its algebraic form.

III Answer the following, 3 scores each.

1. The first term of an arithmetic sequence is 4 . Its $8^{\text {th }}$ term is 25 .
a) What is its common difference?
b) Write its algebraic form.
c) Find the sum of its first 15 terms.
2.The sum of First and $20^{\text {th }}$ terms of an arithmetic sequence is 42 .
a) What is the sum of its $3^{\text {rd }}$ and $18^{\text {th }}$ terms?
b) Write any pair of terms having the same sum.
c).What is the sum of its first 20 terms?
2. The sum of first 13 terms of an arithmetic sequence is 234 .
a) What is its $7^{\text {th }}$ term?
b)If its common difference is 3 , what is its first term?
c)Write the algebraic form of this sequence.

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

4.The algebraic form of an arithmetic sequence is $2 n-5$
a)What is its first term?
b) Is 0 a term in this sequence?
c)What is the first positive number in this sequence?
5. If $2+4+6+8+\ldots \ldots .50=650$ Find the following
a) $1+2+3+\ldots .+25$
b) $1+3+5+\ldots+49$
c) $5+7+9+\ldots .+53$

IV .Answer the following 4 scores each
1.Consider the arithmetic sequences $4,7,10, \ldots .$. and $17,19,21, \ldots$.
a) Write the algebraic form of each sequence
b) Is there any term common to both the sequences?
c) If yes, at which position did the common term occur?
d) What is the common term?
2.The algebraic expression of an arithmetic sequence is $8 \mathrm{n}+11$
a) Write the common difference of the sequence?
b)What is the reminder got when each term of this sequence is divided by the common difference?
c) Is 101 a term of this sequence? Why?
3. Consider the arithmetic sequence $6,10,14, \ldots$.
a) Write its algebraic form.
b) What is its $20^{\text {th }}$ term?
c) Find the sum of its first 20 terms?
d) What is the difference between the sum of its first 20 terms and sum of next 20 terms?
4. The $10^{\text {th }}$ term of an arithmetic sequence is 23 and its $23^{\text {rd }}$ term is 10
a) What is its common difference?
b) what is its first term?
c) What is its $33^{\text {rd }}$ term?
d) In what position did the first negative number occur in this sequence?

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

5. Observe the pattern and answer the questions below 5 score 1

2, 3
4, 5, 6
78910
$\qquad$
$\qquad$
a)Write two more lines of the pattern
b) What is the last term in the $9^{\text {th }}$ row?
c) What is the first number in the $10^{\text {th }}$ row?
d) Find the sum all terms from $1^{\text {st }}$ row to the tenth row?

## SECOND DEGREE EQUATIONS

## POINTS TO REMEMBER

* General form of a second degree equation is $a x^{2}+b x+c=0$

Identitie $u$ ed to olve econd degree equation

* $(a+b)^{2}=a^{2}=2 a b+b^{2}$
* $(a-b)^{2}=a^{2}-2 a b+b^{2}$
* $(x+a)(x-a)=x^{2}-a^{2}$
completing the quare
The equations in the form $x^{2}+p x=m$, can be solved by completing the square as follows
$x^{2}+p x=m$
add $\left(\frac{p}{2}\right)^{2}$ on both ide
$x^{2}+p x+\left(\frac{p}{2}\right)^{2}=m+\left(\frac{p}{2}\right)^{2}$
It becomes
$\left(\mathrm{x}+\frac{p}{2}\right)^{2}=\mathrm{k}^{2}$ from that we can solve for x
DIET ALAPPUZHA 2021


## DIET ALAPPUZHA 2021

Method to form a econd degree equation

3 more than a number $\rightarrow x+3$
7 less than a number $\rightarrow x-7$
4 times a number $\rightarrow 4 x$
2 more than 3 times a number $\rightarrow 3 x+2$
a number and it reciprocal $\rightarrow x, \frac{1}{x}$
consecutive natural numbers $\rightarrow \mathrm{x}, \mathrm{x}+1$
consecutive odd/even numbers $\rightarrow \mathrm{x}, \mathrm{x}+2$
perimeter of a rectangle $\rightarrow 2(l+b)$ l-length, $b$-width
area of a rectangle $\rightarrow \mathrm{lb}$, I -length, b -width
area of square $\rightarrow \quad a^{2} \quad$, a -one side
pythagorus theorem $\rightarrow$ base ${ }^{2}+$ altitude $^{2}=$ hypotenuse $^{2}$
time $=\frac{\text { distance }}{\text { speed }}$
speed $=\frac{\text { distance }}{\text { time }}$

## Questions

1. When one side of a square is decreased by 7 cm , the area becomes $625 \mathrm{sq} . \mathrm{cm}$
2. Take the side of first square as $x$, form the equation
3. Find the side of the original square
4. A square is cut off from a square of side 26 cm . The area of the remaining part is $576 \mathrm{sq} . \mathrm{cm}$
5. Take the side of small square as $x$, form the equation
6. Find the value of $x$
3.. A square garden has 2 m wide path all around it . The total area of the garden and path is 1225sq.m.
7. Take the side of the garden as $x$, form the second degree equation
8. Find the value of $x$
4.A 36 cm long rod is bent to form a right triangle. Its hypotenuse is 15 cm long
1.Take the small side as $x$, form the second degree equation
9. Find the lengths of the perpendicular sides

$$
\text { DIET ALAPPUZHA } 2021
$$

## DIET ALAPPUZHA 2021

5.The product of the digits of a two-digit number is 15 . If 18 is subtracted from the number, then the digits are interchanged.

1 Take the digit in the 10 place a x , find the digit in the unit place
2. Write the number
3. Write the number when the digits are interchanged
4. Find the first number
6.If 3 is added to the product of two consecutive multiples of 6 , we get 435

1. Take the first number as $x$, write the second number
2.Form the equation
3.Find the numbers
2. The terms of an arithmetic sequence with common difference 3 are natural numbers
3. Take one term as $x$, write the next term
4. If the sum of the reciprocals of these terms is $\frac{3}{20} \quad$, then write the terms ?
5. $7,11,15 \ldots \ldots$ is an arithmetic sequence
6. Write its algebraic form.
7. Write the algebraic form of the sum of first $n$ terms .
3.. If the sum of the first n terms of this sequence is 1375 , find n ?

9 The di tance between the oppo ite corner of a rectangular field i 26 m The length of thi field is 4 metres more tham 2 times its width.

1. lif the width is taken as $x$, find its length
2.. Find the area of the field?
2. What is the cost of tiling the field at the rate of $₹ 430$ per square centimetre?
3. To complete a work a man need 10 hours more than the time taken by a boy to complete it. They together take 12 hours to complete the same work.
4. Taking the time taken by the boy as $x$, find time taken by the man?
5. How much work does each of them complete in 1 hour ?
6. Find the work done by them in 1 hour and form the equation.
7. How much time does the boy take to complete the work ?
8. Some students are decided to donate ₹ 2400 to disaster relief fund. But 4 students have not given the money on time. So the remaining students have to give ₹50 more to complete the collection
9. Taking the total number of students as $x$, find the amount given by one student?
10. When 4 students are decreased, what is the amount given by one student?
11. Form the equation and find the number of students who have given the donation?

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

12. In the figure $A B$ is the diameter $C D=12 \mathrm{~cm}$, and length of $A C$ is 15 cm more than the length of $B C$. Find the area of the emicircle

13. In the figure chords AB and CD are extended to meet at $P$. If $C D=2 \mathrm{~cm}$, $P B=3 \mathrm{~cm}$ and $\mathrm{AB}=5 \mathrm{~cm}$ Find $P D$ ?


## CIRCLES and TANGENTS

## POINTS TO REMEMBER

* Angle in a semicircle is right.
* If the angle formed at the point where the lines drawn from the end points of a diameter meet, is acute then the point is outside the circle is right then the point is on the circle
is obtuse then the point is inside the circle.
*The angle made by any arc of a circle on the alternate arc is half the angle made at the centre.
*All angles made by an arc on the alternate arc are equal, a pair of angles on alternate arcs are supplementary.
*Opposite angles of a cyclic quadrilateral are supplementary.
*PA $\times P B=P C \times P D$
* $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC}^{2}$


## DIET ALAPPUZHA 2021

## TANGENTS

## POINTS TO REMEMBER

*The tangent at a point on a circle is perpendicular to the diameter through that point.
*In a circle, the angle between the radii through two point and the angle between the tangent at these points are supplementary.

* In a circle, the angle between a chord and tangent at either end is half the central angle of the chord.
*In a circle, the angles which a chord makes with the tangents at its ends on any side are equal to the angle which it makes on the part of the cirle on the other side.
*The tangents to a circle from a point are of the same length.
*In a quadrilateral formed $b$ y the tangents at four points on a circle, the sum of the opposite sides are equal.

Choose the correct answer from the bracket
1)


In the picture, AB is the diameter of the semicircle. What is the measure of $<\mathrm{ACB}$ ?

$$
\left[90^{\circ}, 60^{\circ}, 30^{\circ}\right]
$$

2) 



What is the measure of $<\mathrm{A}+<\mathrm{C}$ ?

$$
\left[<180^{\circ},>180^{\circ}, 180^{\circ}\right]
$$

3) 



In the picture $<\mathrm{AOC}=100^{\circ}$. Measure of $<\mathrm{ABC}$ is ?
[ $200^{\circ}, 80^{\circ}, 50^{0]}$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

4) 



In the picture $<\mathrm{ABC}=60^{\circ}$. What is the value of x ? [ $30^{\circ}, 120^{\circ}, 90^{0]}$
5)


In the picture PA and PB are tangents to the circle from the point P . If $<\mathrm{APB}=30^{\circ}$, what is the measure of $\angle \mathrm{AOB}$ ? $\left[60^{\circ}, 180^{\circ}, 150^{\circ}\right]$
6)


A circle is drawn with AB as diameter .Where will be the vertex C ?
[ on the circle, inside the circle, outside the circle]
7)


In the circle, chords AB and CD intersect at P . If $\mathrm{PA}=6 \mathrm{~cm}$, $\mathrm{PB}=3 \mathrm{~cm}$. Then $\mathrm{PC} \times \mathrm{PD}$ is ?
[ $9 \mathrm{~cm}, 18 \mathrm{~cm}, 4.5 \mathrm{~cm}$ ]

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

8) 



In the picture , AD is a tangent at a point A on the circle. What is the measure of $\angle \mathrm{ABC}$ ?
$\left[40^{\circ}, 140^{\circ}, 20^{\circ}\right]$
9)


In the figure PA and PB are tangents to the circle from the point P.If $\angle \mathrm{PAB}=50^{\circ}$. what is the measure of $\angle \mathrm{PBA}$ ?
$\left[50^{\circ}, 25^{0}, 80^{\circ}\right]$
10)


In the figure PA and PB are tangents to the circle from the point $P$.
If $\angle \mathrm{PBA}=55^{\circ}$, what is $\angle \mathrm{AOB}$ ?
[ $\left.55^{\circ}, 110^{\circ}, 125^{\circ}\right]$
11)Suppose we draw a circle with $A B$ as diameter in the given picture. Find whether the points C,D,E are inside, outside or on the circle?

Hint-Angles made by line joining from the ends of diameter


## DIET ALAPPUZHA 2021

12) In the figure find $<\mathrm{ACB}$ ?

Hint-Relation between central angle angle angle in the alternate arc

13) Find the values of $x$ and $y$ in the figure?

Hint- Opposite angles of cyclic quadrileterl.

14)In the figure, find the angles of triangle ABC ?

Hint- Relation between central angle and angle in the alternate arc.

15)In the figure find the measures of $<\mathrm{AOB},<\mathrm{ABO},<\mathrm{ACB}$ and <ADB ?

Hint- Angle sum property, relation between central angle and angle in alternate arc, opposite angle of cyclic quadrilateral


## DIET ALAPPUZHA 2021

16) In the figure chords AB and CD are extended to meet at $P$. If $\mathrm{PA}=9 \mathrm{~cm} \mathrm{~PB}=$ $4 \mathrm{~cm}, \mathrm{PC}=12 \mathrm{~cm}$,then find the length of PD ?

Hint- $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$

17)In the figure find <AEB and <ADB ?

Hint- Angles in the same arc, opposite angles of cyclic quadrilateral

18)In the figure $A B$ is diameter of the circle and $A D$ is a tangent at $A$. If $\angle D A C=40^{\circ}$, find
(1) $<\mathrm{ACB}$
(2) $<\mathrm{CAB}$
(3) $<A B C$

Hint- angle in semicircle, angle between chord and tangent is equal to angle made by the chord
 on the other side,angle sum property in a triangle
19)n the figure $P A$ and $P B$ are tangents . If $\angle P=50^{\circ}$, then find $\angle A O B$ and $\angle A C B$ ?

Hint the angle between the radii through two points and angle between the tangents at these
 points are supplementary, relation between central angle angle in the alternate arc.

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

20)In the figure $P A$ and $P B$ are tangents to the circle from the point $P$.

If $<\mathrm{P}=40^{\circ}$, then find

1. $\angle \mathrm{AOB}$
2., $<A C B$
2. $\angle \mathrm{ADB}$
3. $<A E B$

Hint-the angle between the radii through two points and angle
 between the tangents at these points are supplementary, relation between central angle angle in the alternate arc, opposite angles of cyclic quadrilateral
21) In the figure PA and PB are tangents. . AB is a chord, $\angle \mathrm{PBA}=60^{\circ}$., find angles of triangle $A B C$ ?

Hint-The angles which a chord makes with the tangents at its ends are equal to the angle which it makes on the part of the circle on the other side.

22) In the figure chords $A B$ and $C D$ are extended to meet at $P$. $P B=6 \mathrm{~cm}, A B=4 \mathrm{~cm}$ and $P C=12 \mathrm{~cm}$, find

1. Length of PA ?
2. Length of PD?

Hint- PAx PB=PC $\times P D$


## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

23)In the figure $O$ is the centre of the circle and $\angle \mathrm{AOB}=70^{\circ}$

Find (1) <ADB
(2) $<\mathrm{ACB}$

Hint- relation between central angle and angle in the alternate arc.

24) In the figure $O$ is the centre of the circle and $<\mathrm{ACB}=110^{\circ}$


Hint-Opposite angles of cyclic quadrilateral, relation between central angle and angle in the alternate arc.
25) In the figure $<\mathrm{CBE}=70^{\circ}$

Find(1) $<\mathrm{ABC}$
(2) $<\mathrm{ADC}$
(3) $<\mathrm{AOC}$

Hint-linear pair,opposite angles of cyclic quadrilateral,relation between central
 angle and angle in the alternate arc.
26) In the picture $P A$ and $P B$ are tangents to the circle from the point P.If $<\mathrm{APB}=40^{\circ}$ Find $(1)<\mathrm{PAB}$
(2) $<\mathrm{OAB}$
(3) $<\mathrm{AOB}$
(4) $<$ ACB


Hint-Equal tangents,Angle between radius and tangent, angle between the radii through two points and angle between the tangents are supplementary, relation between central angle and angle in the alternate arc

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

27) In the circle chords $A B$ and $C D$ intersect at $P$.
$P A=6 \mathrm{~cm}, P B=3 \mathrm{~cm}, P D=9 \mathrm{~cm}$
Find(1) AB
(2) PC
(3)CD

Hint- PA XPB=PC $\times P D$

28) In the circle, chords $A B$ and $C D$ intersect at $P$. If $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{PC}=2 \mathrm{~cm}$.
Find (1) PA
(2) PC
(3) $C D$

Hint- $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$
A

29) In the figure $A B$ is the diameter of the semicircle and $P C^{\perp} \mathrm{AB}$.
If $P A=12 \mathrm{~cm}, P B=3 \mathrm{~cm}$, find
(1) length of PC
(2) the area of the square with PC as one side

Hint- $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC}^{2}$

30) In the figure $A B$ is the diameter of the semicircle and $P C^{\perp} \mathrm{AB}$
If $P A=8 \mathrm{~cm}, P C=4 \mathrm{~cm}$
(1) length of PB
(2) radius of the semicircle

Hint- $\mathrm{PAx} \mathrm{PB}=\mathrm{PC}^{2}$


## DIET ALAPPUZHA 2021

31) In the figure the tangent at B on the circle make angle $60^{\circ}$ and $70^{\circ}$ with ide $A B$ and $B C$ of triangle $A B C$. Find angles of $\triangle A B C$ ?

Hint-The angles which a chord makes with the tangents at its ends are equal to the angle
 which it makes on the part of the circle on the other side.
32)In the figure sides of triangle ABC are tangents of the circle. If $\mathrm{AP}=2 \mathrm{~cm}, \mathrm{BQ}=3 \mathrm{~cm}$ and $\mathrm{RC}=2.5 \mathrm{~cm}$, then find the perimeter of the triangle?

Hint- tangents from a point outsde the circle are equal

33)In the figure the common chord CD of the cirles is extended to meet at P. PA and PB are tangents to the circles. Prove that $\mathrm{PA}=\mathrm{PB}$ ?

Hint- $\mathrm{PA}^{2}=\mathrm{PCx} \mathrm{PD}$

$$
\mathrm{PB}^{2}=\mathrm{PC} \times \mathrm{PD}
$$


34)In the figure $O$ is the centre of the excircle of triangle PQR . . PA and PB are tangents to the circle. Prove that Perimeter of triangle PQR $=\mathrm{PA}+\mathrm{PB}$ ?

Hint- tangents from a point outside the circle


## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

35)n the figure sides of quadrilateral $A B C D$ are tangents of the circle
1.Prove that $A B+C D=A D+B C$
2. If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{DC}=7 \mathrm{~cm}$
then find the length of $A D$ ?

Hint- tangents from a point outside the circle.

36)In the figure $O$ is the centre of the excircle of triangle PAB.
$\mathrm{PQ}, \mathrm{PR}, \mathrm{AB}$ are tangents of the circle. $\angle \mathrm{APB}=60^{\circ}, \angle \mathrm{PAB}=70^{\circ}$.
Find the angles of triangle OAB.

Hint- $\triangle \mathrm{OQA}, \triangle \mathrm{OSA}$ are equal let $<A O Q=x$


Therefore $\angle O A Q=90-x$
$<O A S=90-x$
$70+90-x+90-x=180$
$2 x=70$
$x=35$
$<\mathrm{OAS}=90-35=55$
$<\mathrm{OAB}=55$
similarly $<\mathrm{OBS}=65$
$<\mathrm{OBA}=65$
$<A O B=180-(55+65)$
$=180-120=60$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## POINTS TO REMEMBER FOR CONSTRUCTION

I. Construction of triangle with given angles and circum radius

1. Draw circle with given radius.
2. Draw a radius and draw central angles of double the measures of given angles.
3. Join the ends of the radii and complete the triangle.

QUE 1. Draw a triangle of angles $50^{\circ}$ and $60^{\circ}$ and circumradius 3 cm .
2. Draw a triangle of angles $45^{\circ}$ and $65^{\circ}$ and circumradius 3.5 cm .
II. Construction of a square having same area as the given rectangle.

1. Draw rectangle of given measures.
2. Extend the length to the measure equal to the breadth.
3. Draw the perpendicular bisector of this line.
4. Draw a semicircle with this line as diameter.
5. Draw a perpendicular from the point of division of length and breadth
6. Using this perpendicular distance draw the square.

Ques 1. Draw a rectangle of area 12 sq.cm and construct a square of area equal to the area of the rectangle.
Ques 2. Draw a rectangle of area 18sq.cm and construct a square and an isosceles triangle of area equal to the area of the rectangle.
Ques 3. Draw a rectangle of length 6 cm and width 4 cm and construct a square of area equal to the area of the rectangle.
III.(a) Construct a square of area $15 \mathrm{sq} . \mathrm{cm}$.

Hint. 1. Find the factors of 15
2.Draw a rectangle with these factors as sides.
3. Construct square having same area as the rectangle.
III.(b) Constructing a square without drawing a rectangle.

1. Find the two factors of the number showing the area.
2. Draw a line of length equal to the sum of these factors and divide it the measure of the factors.
3.Draw a semicircle with this line as diameter.
3. From the point of division draw a perpendicular to meet the semicircle.
5.Draw square with this perpendicular length as one side.

Ques 1. Draw a square of area 13sq.cm.

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

IV. Construct of a rectangle having the same area of the given square and one specified side. 1 Draw line PB with length of the pecified length of the rectangle
2. Draw a semicircle with PB as diameter.
3. Draw a right triangle PCB in this semicircle with one side equal to the side PC of the square.
4..Draw a circle with other side BC of the triangle as diameter 5.PA $\times \mathrm{PB}=\mathrm{PC}^{2}$

Ques 1). Construct a rectangle of one side 7 cm and area equal to the area of square of side 5 cm . Ques 2). Construct a rectangle of one side 7 cm and area equal to the area of square of side 6 cm .

## III. Drawing a tangent at a point on the circle.

1. Draw a circle with given radius
2. Draw one radius
3. Draw a perpendicular to the radius through its endpoint.

Ques 1). Draw a circle of radius 2.5 cm . Mark a point $P$ on it and draw tangent at this point. IV. Construction of a triangle with all its sides touching a given circle

1. Draw a circle with given radius
2. Draw central angles measuring the supplementary angles of the angles of the triangle
3. Draw perpendicular through the endpoints of the radii
4. Complete the triangle,

Ques 1. Draw a circle of radius 3 cm . Draw a triangle of angles $50^{\circ}, 60^{\circ}, 70^{\circ}$ with all its sides touching the given circle.
Ques 2) Draw a circle of radius 2 cm . Draw a triangle of angles $65^{\circ}, 75^{\circ}$ with all its sides touching the circle.

## V. Construction of tangents to a circle from a point outside

1. Draw circle with given radius
2. Join the centre of the circle to the point outside
3. Draw a circle with this line as diameter.
4. Mark the points where this circle touches the given circle
5. Join these points to the point outside.

Ques 1. Draw a circle of radius 3.5 cm . Mark a point $P 10 \mathrm{~cm}$ away from the centre. Draw tangents from $P$ to the circle and measure its length
Ques 2). Draw a circle of radius 3 cm . Mark a point M 8 cm away from the centre. Draw tangents from $M$ to the circle and measure its length.

DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## STATISTICS

## POINTS TO REMEMBER

*The mean of set of values is got by dividing its sum by the number of values

$$
\text { ie, Mean } \frac{\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right)}{n}
$$

* If the number of values ' n ' is an odd number then its median is got by arranging the terms in ascending or descending order and take the $\frac{n+1}{2}$ th term
*If ' $n$ ' is even, then median is the average of $\frac{n}{2}{ }^{\text {th }}$ and $\frac{n+1}{2}$ th $^{\text {th }}$ terms

1. The temperature of the days in a week is $31^{0}, 28^{0}, 30^{0}, 29^{0}, 32^{0}, 27^{0}, 33^{0}$,
find its mean and median
2.. The income of seven employees in a week is $\mathbf{3 5 0 0}, \mathbf{2 1 0 0}, \mathbf{2 5 0 0}, \mathbf{2 3 0 0}, \mathbf{2 3 0 0}, 2200,33003$. Find its mean and median.
3.Find the mean and median of first 100 natural numbers?
```
Sum= n(n+1)
        2
    = 100\times101
        2
    =50x101= 5050
    mean = sum of numbers
            total number
            = 5050/100=50.5
    mdian= 50 th number+ 51 th number
            2
            = 50+51
        2
    = 101/2=50.5
    DIET ALAPPUZHA 2021
```


## DIET ALAPPUZHA 2021

3)Find the median of 50 terms of the arithmetic sequence $x_{n}=2 n+3$ ?

Median $=25^{\text {th }}$ term $+26^{\text {th }}$ term
2

$$
\begin{aligned}
& =\frac{x_{25}+x_{26}}{2} \\
& =\frac{(2 \times 25+3)+(2 \times 26+3)}{2} \\
& =\frac{53+55}{2} \\
& =54
\end{aligned}
$$

4)The daily wages of employees in a factory is given in the table. Find its median

| Daily Wages | Number of Employees |
| :---: | :---: |
| 350 | 2 |
| 400 | 3 |
| 500 | 4 |
| 600 | 5 |
| 650 | 3 |
| 700 | 2 |
| 800 | 1 |

## DIET ALAPPUZHA 2021

5). The daily wages of employees in a factory are given in the table. Find the median income.

| Daily wages | Number of employees |
| :---: | :---: |
| 450 | 2 |
| 500 | 3 |
| 550 | 5 |
| 600 | 8 |
| 650 | 6 |
| 700 | 5 |
| 750 | 1 |

6) Weights of students in a class are given below

| Weights(Kgs) | Number of students |
| :---: | :---: |
| 48 | 3 |
| 50 | 5 |
| 56 | 10 |
| 60 | 15 |
| 68 | 8 |
| 78 | 7 |
| 80 | 5 |

(1) How many students are there in the class?
(2)Which student's weight is the median weight?
(3) Find the median of weight?

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

7)The monthly income of 30 families are given in the table. Find the mean and median.

| Monthly Income | Number of families |
| :---: | :---: |
| 4000 | 3 |
| 5000 | 5 |
| 6000 | 8 |
| 7000 | 5 |
| 8000 | 4 |
| 9000 | 3 |
| 10000 | 2 |

## Mathematics of chance

## POINTS TO REMEMBER

Probability is the ratio of number of favourable outcomes to the total number of outcomes.

Probability $=\frac{\text { Number of favourable possibilities }}{\text { Total number of possibilities }}$

## Geometrical Probability

Probability $=\frac{\text { Possible area }}{\text { Totalarea }}$
Considering ordered pairs
Probability $=\frac{\text { Number of possible ordered pairs }}{\text { Total number of ordered pairs }}$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## Questions

1. There are 6 white beads, 9 black beads and 5 blue beads in a box. If we take a bead without peeking, what is the probability of
a. The bead being black?
b. The bead being while
c. The bead being either black or white?
2. How many two digit numbers can be formed using the digits 4,5 and 6 . In these two digit numbers what is the probability of digits being same?
3. There are two boxes which contains paper pieces numbered from 1 to 10 . If we take a paper from each of the boxes, what is the probability of the numbers being prime?

4. In the figure, an equilateral triangle is drawn inside a circle. If we put a dot in the figure without looking ,what is the probability that the dot is in the shaded portion.
5. The figure contains two semicircles. " 0 " is the centre of larger semicircle. If we put a dot in the figure without looking, what is the probability that the dot is in the smaller semicircle?


## DIET ALAPPUZHA 2021

6. A box contains 18 beads of white and black colour. If the probability of taking a black bead is $\frac{2}{3}$ then,
a. How many white beads are there?
b. How many black beads are there?

7 A bag contain 8 black ball and 12 white ball Another bag contain total number of white and black balls is 30. If we take a bead from each bag with out looking in to it, then the probability of getting a black ball from the second bag is $\frac{1}{6}$ less than that of the first bag.
a. How many black balls are there in the second bag?
b. What is the probability of taking a same colour ball from each bag?
8. If we put a dot in the figure without looking, what is the probability that

1. the dot is in the shaded region
2. the dot is in the unshaded region

9 In two digit number ,

a. what is the probability of ten's place digit is larger than one's place digit?
b. what is the probability of one's place digit is larger than ten's place digit?
10. The letters of the word "ATTITUDE ' is put in a box.

If we take one letter from it,
a. what is the probability of getting $T$
b. what is the probability of not getting $T$

DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## TRIGONOMETRY

## POINTS TO REMEMBER

* The sides of any triangle of angles $45^{\circ} 45^{\circ} 90^{\circ}$ are in the ratio $1: 1: \sqrt{2}$
* The sides of any triangle of angles $30^{\circ} 60^{\circ} 90^{\circ}$ are in the ratio $1: \sqrt{3} \quad: 2$
* In a right angled triangle, considering the acute angle, the ratio of opposite side to hypotenuse is called sine ratio(SIN)
* In a right angled triangle, considering the acute angle, the ratio of adjacent side to hypotenuse is called cosine ratio( COS)
*In a right angled triangle, considering the acute angle, the ratio of opposite side to adjacent is called tangent ratio( Tan)
* Area of $\triangle A B C=$
$\frac{1}{2}$ ab $\sin C \quad \frac{1}{2}$ bc $\sin A \quad \frac{1}{2}$ ac $\sin B$

* Length of chord $=2 r \sin \frac{c}{2}, r=$ radius $\frac{c}{2}=$ half of central angle

```
* In the figure
\(a=2 r \sin A \quad b=2 r \sin B, c=2 r \sin C\)
```



* Angle of depression

Angle of elevation


## DIET ALAPPUZHA 2021

## Questions

1. In the following right angled triangle, one angle and one side is given find the other two sides.
a.

| $A B$ | $B C$ | $A C$ |
| :---: | :---: | :---: |
|  | 4 |  |


c.

| AB | BC | AC |
| :---: | :---: | :---: |
|  |  | 12 |


d

| AB | BC | AC |
| :---: | :---: | :---: |
|  | 10 |  |



DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

2. A ladder is being lean on a wall. The foot of the ladder is 5 m away from the wall. If the angle between the ground and the ladder is $30^{\circ}$, find the height at which
3. When the sun is at an angle of elevation of $45^{\circ}$, the shadow of the tree is of length 20meter. Find the height of the tree.
4. What is the circum diameter of the triangle in the figure?

5. In triangle $A B C<A=\angle B=30, A C=4 \mathrm{~cm}$ then
a. Find the length of $B C$
b. Find the length of $A B$

C

## DIET ALAPPUZHA 2021

6. The distance between two buildings is 20 meter. From the of base the bigger building, the top of the smallest building is seen with an angle of elevation $45^{\circ}$, From the of base the smaller building, the top of the bigger building is seen with an angle of elevation $60^{\circ}$,
a. Draw the rough figure?
b. find the height of the buildings
7. A man,1.8 metres tall, stands on the top of a light house 30 metres high and sees a ship at sea at a depression of $40^{\circ}$.
a. Draw the rough figure?
b. How far is the ship from the light house ?
8. A man standing at the edge of a canal sees the top of a tree at an elevation of $60^{\circ}$. Stepping 10 metres back, he sees it at an elevation of $30^{\circ}$
a Draw the rough figure?
b. Find the width of the canal?
c. Find the height of the tree ?
9. When the sun is at an angle of elevation of $35^{\circ}$, the shadow of the tree is of length 10 meter. Find the length of the shadow if the sun is at an angle of elevation of $25^{\circ}$ ? 10. In $\triangle A B C, A B=8 \mathrm{~cm}, \angle A=45^{\circ}$ and $\angle B=60^{\circ}$
10. Find the perpendicular distance from $C$ to $A B$
11. Calculate the area of $\triangle A B C$ ?


## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

SOLIDS
POIN S O REMEMBER

## SQUARE PYRAMID

$l^{2}=h^{2}+\left(\frac{a}{2}\right)^{2}, \quad h^{2}=l^{2}-\left(\frac{a}{2}\right)^{2}$,
$\left(\frac{a}{2}\right)^{2}=l^{2}-h^{2}$
$l^{2}=e^{2}-\left(\frac{a}{2}\right)^{2} \quad, \quad e^{2}=l^{2}+\left(\frac{a}{2}\right)^{2}$,
$\left(\frac{a}{2}\right)^{2}=e^{2}-l^{2}$
$e^{2}=h^{2}+\left(\frac{d}{2}\right)^{2}, \quad h^{2}=e^{2}-\left(\frac{d}{2}\right)^{2}$,
$\left(\frac{d}{2}\right)^{2}=e^{2}-h^{2}$
(d- DIAGONAL)

* Lateral Surface Area=2al
* Surface Area =2al+ $a^{2}$
*Volume $=\frac{1}{3} \times a^{2} \times \mathrm{h}$
* Square pyramid whose lateral faces are equilateral triangles

Lateral Surface Area $=\sqrt{3} \times a^{2}$
Surface Area $=\sqrt{3} \times a^{2}+a^{2}$
Volume $=\frac{a^{3}}{3 \sqrt{2}}$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## Circular Pyramid (Cone).

*Radius of sector = Slant height of cone ( $\mathrm{R}=\mathrm{l}$ )
*Arc length of sector = Base perimeter of cone
*Area of sector = Curved surface area of cone
Sphere, Hemisphere

* Surface area of a sphere of radius $r=4 \pi r^{2}$
* Volume of a phere of radiu $r=\frac{4}{3} \pi r^{3}$
* Surface area of a hemisphere of radius $r=3 \pi r^{2}$
* Curved surface area of hemisphere of radius $r=2 \pi r^{2}$
* Volume of hemisphere of radius $r=\frac{2}{3} \pi r^{3}$



$$
r^{2}+h^{2}=l^{2}
$$


Base area

Curved surface area
உவఁிஜை வఠన్®กั
surface area $=\pi r^{2}+\pi r l$
ญృวันั(ซ) $\mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h}$


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## Questions

1. A circle of radius 12 cm is divided into 4 equal sectors. A circular pyramid is made using each sector .
a. find the slant height of the circular pyramid
b. find the radius of the circular pyramid.
2. A square prism is of base perimeter 64 cm and height 15 cm . A largest square pyramid which can be carved from it. Find the
(a) slant height of the square pyramid?
b) find the lateral surface area of square pyramid?
c) find the total surface area of square pyramid?
d) Find the volume of the pyramid
3. The surface area of the sphere is $100 \pi \mathrm{~cm}^{2}$.
a. Find the radius
b. Find the volume
4. Find the volume and total surface area of the largest circular pyramid which can be carved from a cube of side 12 cm .
5. Find the volume and total surface area of the square pyramid

6. A sector is cut out from a circle of radius 25 cm and made into a cone. The radius of this cone is 10 cm
7. what is the central angle of the sector.
8. Find the height of the cone?
9. A metallic sector of central angle $240^{\circ}$ and radius 15 cm is rolled up to form a cone. What is the volume of the cone so formed?
10. a) What is the volume of a solid metal cylinder of height 4 cms and radius 5 cms ?
b) This solid is melted and recast in to 5 cones of equal height and radius 2 cms . c) Find the height of such a cone

$$
\text { DIET ALAPPUZHA } 2021
$$

## DIET ALAPPUZHA 2021


9. A water tank is in the shape of a cylinder whose ends are joined by hemisphere. The diameter is 2 m and the length of the tank is 8 m . If the cost of painting is Rs. 60 per square meter, find the cost of painting the whole tank?
10. We want to make a paper pyramid with base a square of 10 cms and height 12 cms . What should be the lengths of the sides of the triangles?

## CO ORDINATES

## POINTS TO REMEMBER

1. Coordinate axes, coordinates
2.Representing the position of points using pairs of numbers
3.Formation of geometrical figures by joining the coordinates of points
4.Identifying coordinates of vertices of a rectangle in which sides are parallel to the axes
5.Identifying coordinates of vertices of a rectangles and parallelograms in which sides are not parallel to the axes
6.Identifying coordinates of vertices of geometrical figures
2. Finding distance between two points using coordinates


The position of a point on the number line can be represented by a single number
The position of $A$ is 4 units right of 0 The position of $B$ is 6 units left of 0

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

The position of a point on a plane can be represented by coordinates based on coordinate axes
Coordinate axes
X Axis ( Horizontal line) Y Axis (perpendicular Line)


Coordinates- Pairs of Numbers
$P(x, y) \quad x$ coordinate ( distance of $P$ from the $Y$ axis)
y coordinate (distance of P from the X axis)
The distance between the Points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+(y 2-y 1)^{2}}$
The x coordinate of any point on the Y axis is 0
The $y$ coordinate of any point on the X axis is 0

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

Finding the fourth vertex of a rectangle, square, parallelogram, Rhombus, When the other three vertices are given


1. Draw the coordinate axes and plot the points $\mathrm{A}(-3,-1), \mathrm{B}(-1,2), \mathrm{C}(2,-1), \mathrm{D}(4,2)$. Join the points in order, and name the polygon thus obtained.
2.Writhe the coordinates of the points A, B, C,D,E,F,G,H,I,J,K,L


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

3. If the radius of the circle with centre $O$ is 3 units, Write the coordinates of $P, A$ and $B$

4.If the radius of the circle with centre O is 4units, Write the coordinates of P and Q . 5.If the radius of the circle with centre O is 2units, Write the coordinates of L and M

4. The sides of the rectangle are parallel to the axes. Write the coordinates of the vertices B and D


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

7.The sides of the rectangle are parallel to the axes. Write the coordinates of the vertices P andR

8.The sides of the rectangle are parallel to the axes. Write the coordinates of the vertices F and H

9.The opposite vertices of a rectangle with sides parallel to the axes are $(-2,-1),(4,5)$.
a) find the coordinates of the other vertices?.
b) Calculate its , Perimeter, Area and length of the diagonal.
10.The circle with centre $(3,4)$ passes through through the point $\mathrm{P}(7,7)$
a) Calculate the radius of the circle?
b) find the coordinates of points of intersection of this circle with the axes?

## DIET ALAPPUZHA 2021

11.In the figure the side $A B$ of the parallelogram is parallel to the $X$ axis. If $A(2,3), A B=6$ $\mathrm{cm}, \mathrm{AD}=4 \mathrm{~cm}, \angle \mathrm{DAB}=60^{\circ}$, find the coordinates of the points $\mathrm{B}, \mathrm{C}$ and D

12. In the figure the sides AD and Bc are parallel to the X axis. Find the coordinates of the points B, C and D


A (-3, 0)

DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

13.Calculate the length of the diagonal and Perimeter of the quadrilateral PQRS?

14. Prove that the points $A(-4,3), B(2,-3), C(6,1)$ are the vertices of a right angled triangle. Also find the length of its hypotenuse .
15.In the figure ABCD is a square.
a) Write the coordinates of the points B, C, and D.
b) Calculate its area and Perimeter?


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

16. Write the coordinates of the fourth vertex of the rectangle.

17.Write the coordinates of the fourth vertex of the square.


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

18.Write the coordinates of the fourth vertex of the parallelogram.

19.Write the coordinates of the fourth vertex of the rhombus.


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

20.( 3,4 ) is a point on a circle with centre at the origin.
a) Calculate the radius of the circle.
b) Write the coordinates of the points of intersection of the circle and the axes.

## 10 POLYNOMIALS

Factors and Solutions
The Difference of squares of two numbers is the product of their sum and difference
$x^{2}-y^{2}=(x+y)(x-y)$
$x^{2}-16=x^{2}-4^{2}=(x+4)(x-4)$
$x^{2}-5 x+6=(x-2)(x-3)$
The binomials $(x-2)(x-3)$ are the factors of $x^{2}-5 x+6$.
If $\mathrm{p}(\mathrm{x})=\mathrm{q}(\mathrm{x}) * \mathrm{r}(\mathrm{x})$ then $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ are factors of $\mathrm{p}(\mathrm{x})$

1. Which number should be added to $p(x)=x^{2}+5 x-11$, for $x-3$ be a factor
2. Write each of the following as product of two first degree polynomials
3. $x^{2}-10 x+21$
4. $x^{2}-4 x-21$
5. $x^{2}+4 x-21$
6. $x^{2}+10 x+21$
3.. Consider the polynomial $\mathrm{P}(\mathrm{x})=2 \mathrm{x}^{3}+7 \mathrm{x}^{2}-3 \mathrm{x}+4$
7. Find $p(1), p(2), p(3)$
8. Find $P(x)-p(1)$, and find its factors
9. Find $P(x)-p(2)$ and find its factors
10. Find $P(x)-p(3)$ and find its factors
11. Find the value of $k$, if $x-3$ is a factor of $P(x)=x^{3}+k x^{2}+x+6$. Check whether $x-2$ is a factor 5. $\mathrm{p}(\mathrm{x})$ is a second degree polynomial. And $\mathrm{P}(7)=0, P(-4)=0$, write $\mathrm{p}(\mathrm{x})$
$6 . x-8$ and $x+5$ are factors of a second degree polynomial $p(x)$. Write $p(x)$
7.P(x) $=3 x^{2}-5 x+17$, What should be subtracted from $p(x)$ for $x+5$ a factor

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

20.(3,4) is a point on a circle with centre at the origin.
a) Calculate the radius of the circle.
b) Write the coordinates of the points of intersection of the circle and the axes.

## 10 POLYNOMIALS

Factors and Solutions
If the polynomial $p(x)$ is the product of the polynomials $q(x)$ and $r(x)$, then we say that the polynomials $q(x)$ and $r(x)$ are factors of the polynomial $p(x)$

If the first degree polynomial $\boldsymbol{x}-\boldsymbol{a}$ is a factor of the polynomial $p(x)$, then $p(a)=0$; that is, $a$ is a solution of the equation $p(x)=0$

If the polynomial $\boldsymbol{p}(\boldsymbol{x})$ can be split into first degree factors as

$$
p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)
$$

then the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are the solutions of the equation $p(x)=0$

The Difference of squares of two numbers is the product of their sum and difference
$x^{2}-y^{2}=(x+y)(x-y)$
$x^{2}-16=x^{2}-4^{2}=(x+4)(x-4)$
$x^{2}-5 x+6=(x-2)(x-3)$
The binomials $(x-2)(x-3)$ are the factors of $x^{2}-5 x+6$. If $\mathrm{p}(\mathrm{x})=\mathrm{q}(\mathrm{x}) * \mathrm{r}(\mathrm{x})$ then $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ are factors of $\mathrm{p}(\mathrm{x})$

For any second degree polynomial $p(x)$ and for any number $a$, if $p(a)=0$, then the first degree polynomial $x-a$ is a factor of the polynomial $p(x)$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

1. Which number should be added to $p(x)=x^{2}+5 x-11$, for $x-3$ be a factor
2. Write each of the following as product of two first degree polynomials
3. $x^{2}-10 x+21$
4. $x^{2}-4 x-21$
5. $x^{2}+4 x-21$
6. $x^{2}+10 x+21$
3.. Consider the polynomial $\mathrm{P}(\mathrm{x})=2 \mathrm{x}^{3}+7 \mathrm{x}^{2}-3 \mathrm{x}+4$
7. Find $p(1), p(2), p(3)$
8. Find $P(x)-p(1)$, and find its factors
9. Find $P(x)-p(2)$ and find its factors
10. Find $P(x)-p(3)$ and find its factors
11. Find the value of $k$, if $x-3$ is a factor of $P(x)=x^{3}+k x^{2}+x+6$. Check whether $x-2$ is a factor
12. $p(x)$ is a second degree polynomial. And $P(7)=0, P(-4)=0$, write $p(x)$
$6 . x-8$ and $x+5$ are factors of a second degree polynomial $p(x)$. Write $p(x)$
7.P(x) $=3 x^{2}-5 x+17$, What should be subtracted from $p(x)$ for $x+5$ a factor
13. $P(x)=x^{2}+a x+b$ and $x-7$ is a factor and $p(4)=0$, calculate the values of $a$ and $b$
14. What is the reminder when $x^{3}+8 x^{2}+7 x-13$ is divided by $(2 x-1)$
15. Check whether $(2 x+3)$ is a factor of $P(x)=2 x^{3}+7 x^{2}-5 x+3$

## DIET ALAPPUZHA 2021

## Quotient and remainder

We have seen that if we take a polynomial $p(x)$ and a number $a$, then $x-a$ is a factor of $p(x)-p(a)$. (The box, First degree factors).

So, the polynomial $p(x)-p(a)$ can be written as the product of $x-a$ and a polynomial $q(x)$ :

$$
p(x)-p(a)=(x-a) q(x)
$$

We can make a slight change and write this as

$$
p(x)=(x-a) q(x)+p(a)
$$

This means that for any polynomial $p(x)$ and any number $a$, we can write $p(x)$ as a sum of a product of $x-a$ by a polynomial and a number.

This is somewhat like writing

$$
18=(7 \times 2)+4
$$

in the quotient-remainder form. So, in the equation $p(x)=(x-a) q(x)+p(a)$ also, $q(x)$ is called the quotient on dividing $p(x)$ by $x-a$ and $p(a)$ is called the remainder.

## DIET ALAPPUZHA 2021

8. $P(x)=x^{2}+a x+b$ and $x-7$ is a factor and $p(4)=0$, calculate the values of $a$ and $b$
9. What is the reminder when $x^{3}+8 x^{2}+7 x-13$ is divided by $(2 x-1)$
10. Check whether $(2 x+3)$ is a factor of $P(x)=2 x^{3}+7 x^{2}-5 x+3$

## GEOMETRY AND ALGEBRA

One vertex of a parallelogram is $(0,0)$ and the adjacent vertices are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ then its fourth vertex will be $\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$


## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

Three vertices of a parallelogram are $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$, and $C\left(x_{3}, y_{3}\right)$.Then its fourth vertex is $\left(x_{1}+x_{3}-x_{2}, y_{1}+y_{3}-y_{2}\right)$


MID POINT


In a number line the midpoint of $A B$ is $M$ and it is 5 units or $\frac{12-2}{2}$ on right that is $M$ is at a distance of 7 units right of origin
The position of M is $\mathrm{x}=\mathrm{x}_{1}+\left(\mathrm{x}_{2} \mathrm{X}_{1}\right) / 2$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

The coordinates of the mid point $\mathrm{M}(\mathrm{x}, \mathrm{y})$ of the line joining $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$\mathrm{x}=\mathrm{x}_{1}+\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / 2$
$y=y_{1}+\left(y_{2}-y_{1}\right) / 2$
$\mathrm{x}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) / 2$
$y=\left(y_{1}+y_{2}\right) / 2$


## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

## Proportion


$P$ divides the line $A B$ in the ratio $m: n$
the length of $A P$ is $m /(m+n)$ part of $A B$
The x coordinate of P is $\mathrm{x}=\left(\mathrm{mx}_{2}+\mathrm{nx}_{1}\right) /(\mathrm{m}+\mathrm{n})$
The $y$ coordinate of $P$ is $y=\left(m y_{2}+n y_{1}\right) /(m+n)$

## Line Problem

Only one line can be drawn by joining two points.
If the x coordinate of points on a line are different the line is not parallel to Y axis
If the $y$ coordinate of points on a line are different the line is not parallel to X axis
The x and y coordinates of points on a line are different ,the line is not parallel to either axes. It is a slanted line.
On a slanted line the change in y coordinate is proportional to the change in x coordinate
The change in y coordinate $=y_{2}-y_{1}$
The change in x coordinate $=\mathrm{x}_{2}-\mathrm{x}_{1}$

## DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

The change y coordinate
The change x coordinate the line
$m$, The constant of proportionality is called slope of


Equation of a line


## DIET ALAPPUZHA 2021

The equation of a line passing through $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is
$y-y_{1}=\underline{y}_{\underline{2}-y_{1}} \quad$ or $\quad \mathrm{y}-\mathrm{y}_{1}=\left(\mathrm{y}_{2}-\mathrm{y}_{\underline{1}}\right)\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{X}-\mathrm{X}_{1} \quad \mathrm{X}_{2}-\mathrm{X}_{1} \quad \mathrm{X}_{2}-\mathrm{X}_{1}$
The product of the slopes of perpendicular lines is -1
Slope of parallel lines are equal
Slope of X Axis is Zero
Slope of Y axis is Not Defined

## Equation of a Circle

The equation of a circle with centre at the origin and passing through ( $\mathrm{x}, \mathrm{y}$ ) and has a radius r is $x^{2}+y^{2}=r^{2}$


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

The equation of a circle with centre at ( $\mathrm{x}_{1}, \mathrm{y}_{1}$ ) and radius r , passing through $(\mathrm{x}, \mathrm{y})$ is $\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2}$


1. Prove that the sum of squares of all sides of a parallelogram is equal to the sum of the squares of its diagonals?
2.In parallelogram $A B C D$, Prove that $x_{1}+x_{3}=x_{2}+x_{4}$ and $y_{1}+y_{3}=y_{2}+y_{4}$


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

3. In the figure $P, Q, R$ are the midpoints of the sides of $\triangle A B C$. Find the coordinates of $A, B$, and $C$

4. $\mathrm{A}(-3,-1), \mathrm{B}(1,5) \mathrm{C}(11,3)$ and $\mathrm{D}(9,-3)$ are the vertices of a quadrilateral ABCD .
a) Find the coordinates of the midpoints of each side
b) Prove that the quadrilateral formed by joining the midpoints is a parallolgram
5.The vertices of the quadrilateral PQRS are the midpoints the sides of quadrilateral ABCD .

Write the coordinates of A,C, D and S


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

6.Find the coordinates of points which divides the line joining the points $(2,8),(8,-4)$ into three equal parts
7.Find the coordinates of points which divides the line joining the points $(-8,-6),(16,6)$ into three equal parts
8.Find the coordinates of the points of intersection of the line joining the points ( $-6,-6$ ), ( 14,4 ) and the Axes.
9. a)write the equation of the line joining the points ( $-3,3$ ), ( 12,2 )
b) Find the coordinates of the point of intersection of this line with the axes.
c)Check whether the points $\mathrm{A}(3,1), \mathrm{B}(1,2)$ are on this line?..
10.a ) Write the coordinates of the points $A$ and $B$ in the picture
b) Find the slope of the line?.
c) Write the equation of the line


DIET ALAPPUZHA 2021

## DIET ALAPPUZHA 2021

11. a)Write the coordinates of the centre of the circle.
b)calculate the radius of this circle.
c)Write the equation of the circle.

12. Find the coordinates of the point of intersection of $X$ axis and the circle $x^{2}+y^{2}-10 x-6 y+, 16=0$. If the centre of this circle is $(5,3)$, Calculate its radius?
13.A circle with centre $(0,0)$ passes through $(3,4)$.
a)Calculate its radius?
b)Write the equation of this circle
c)Write the coordinates of four other points on this circle.

## Constructions

a) Circum circle
b) Rectangle and square of equal area
c) Tangent at a point
d) Tangents from an external point.
e) Incircle using the concept of tangents.

## Questions

1. Draw a triangle of circum radius 3 cm and two of the angles $30^{\circ}$ and $70^{\circ}$
2. Draw a triangle of circum radius 3 cm and two of the angles $32.5^{\circ}$ and $37.5^{\circ}$
3. Draw a triangle of circum radius 3 cm and two of the angles $50^{\circ}$ and $60^{\circ}$
4. Draw a triangle of circum radius 3.5 cm and two of the angles $60^{\circ}$ and $60^{\circ}$
5. Draw a triangle of circum radius 4 cm and two of the angles $65^{\circ}$ and $55^{\circ}$

## Questions

1.Draw a rectangle of sides 5 cm and 3 cm . Draw a square having area equal to the area of the rectangle.
2. Draw a rectangle of sides 5 cm and 4 cm . Draw a square having area equal to the area of the rectangle.
3. Draw a rectangle of area 18 sq cm . Construct a square with the same area.
4. Draw a square of area 21 sq cm .
5. Draw a square

## Questions

1. Draw a circle of radius 2 cm . Mark a point A on the circle and draw a tangent through A.
2. Draw a circle of radius 2.5 cm . Mark a point B on the circle and draw a tangent through B
3. Draw a circle of radius 3 cm . Mark a point C on the circle and draw a tangent through C
4. Draw a circle of radius 3.5 cm . Mark a point P on the circle and draw a tangent through P
5. Draw a circle of radius 4 cm . Mark a point $Q$ on the circle and draw a tangent through 9

## Questions

1. Draw a circle of radius 3 cm . Mark a point P, 5 cm away from the centre. Draw two tangents and measure the length.
2. Draw a circle of radius 6 cm . Mark a point P, 10 cm away from the centre. Draw two tangents and measure the length.
3. Draw a circle of radius 3 cm . Mark a point P, 7 cm away from the centre. Draw two tangents and measure the length.
4. Draw a circle of radius 2.5 cm . Mark a point P, 6.5 cm away from the centre. Draw two tangents and measure the length.
5. Draw a circle of radius 4 cm . Mark a point P, 8 cm away from the centre. Draw two tangents and measure the length.

## Questions

- 1. Draw a circle of radius 2 cm . Draw a triangle with angles 40,60, 80 whose sides are tangents to the circle.
- 2. Draw a circle of radius 2 cm . Draw a triangle with angles 50, 60,70 whose sides are tangents to the circle.
- 3. Draw a circle of radius 2.5 cm . Draw a triangle with angles 50,65,65 whose sides are tangents to the circle.
- 4. Draw a circle of radius 2.5 cm . Draw a triangle with angles 55,65 whose sides are tangents to the circle.
- 5. Draw a circle of radius 3 cm . Draw a triangle with angles 60,60 whose sides are tangents to the circle.





## ๓ตึி\%

| $\begin{gathered} \hline \text { gemp } \\ \text { ? } \\ \hline \text { ? } \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| 1 |  cyentam |  <br>  <br>  <br>  <br>  <br>  |
| 2 |  | - <br> - <br>  <br> - 1 - <br> - AE CD R) . <br> - $\mathrm{BA} \times \mathrm{BB}=\overrightarrow{\mathrm{CH}}$ <br>  |
| 3 | moces musgo คตาかiต: |  |
| 4 | (10) <br>  |  <br> ( <br>  <br>  |
| 5 |  |  <br>  <br>  <br>  <br>  |
| 6 | 4, |  <br>  <br>  <br>  <br> - (1) Th <br>  |



| 7 | (mayrumbe | - 1 (\%) <br>  <br> 1- <br> - 1 - m ค <br>  |
| :---: | :---: | :---: |
| 3 | Tamajo |  |
| 9 |  am |  <br> - 1 - Mex |
| 10 |  |  <br>  <br> 11 $p(x)$ - $p(a)$, |
| 11 |  |  |

##   $3$




## 

＂｜ ＂




















 ＝5،
м

行








## 


जलிゥ๐











1.
2.
3.
4.
5.

6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

21.
22.
23.
24.
25.
26.
27.
28.
29.

30

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

45

## 



