WORK SHEET BASED ON THE FOCUS AREA FROM CHAPTER 1

- 1) A function $f:X\longrightarrow Y$ is onto, then the range of f is
- 2) The function $f:N\longrightarrow N$ given by f(x)=2x is
 - (A) one-one and onto

(B) one-one and not onto

(C) not one-one and onto

- (C) not one-one and not onto
- 3) Which of the following functions is a bijective function. Explain with reasons.

- 4) Consider the function $f:N\longrightarrow N$ given by $f(x)=3x+2,\ x\in N$. Prove that f is one-one and not onto.
- 5) Consider the function $f:N\longrightarrow N$ given by $f(x)=x^3,\ x\in N$. Prove that f injective but not surjective.
- 6) Consider the function $f:N\longrightarrow N$ given by $f(x)=\left\{\begin{array}{ll} x, & if \ x\leq 3\\ x-1, & if \ x>3\end{array}\right.$ Prove that f is not a one-one function.

- 7) Consider the function $f:\left[0,\frac{\pi}{2}\right]\longrightarrow R$ given by f(x)=sinx and $g:\left[0,\frac{\pi}{2}\right]\longrightarrow R$ given by g(x)=cosx.
 - (i) Show that f and g are one-one functions.
 - (ii) Is f + g one-one? Why?
- 8) The number of bijective functions from $A=\{1,2,3,4,5\}$ to $B=\{a,b,c,d,e\}$ is
 - A) 24

B) 125

C) 25

- D) 120
- 9) Consider the real functions f and g defined by f(x) = 3 2x and $g(x) = 2x^2 1$. Which of them is a bijective function? Explain with reasons.
- 10) Let $f:\{1,3,4\} \rightarrow \{1,2,5\}$ and $g:\{1,2,5\} \rightarrow \{1,3\}$ given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Then find $g \circ f$.
- 11) Find $f \circ g$ and $g \circ f$ for the following real functions given by
 - (i) f(x) = |x| and g(x) = |3x + 4| and (ii) $f(x) = 16x^4$ and $g(x) = x^{\frac{1}{4}}$.
- 12) Consider the real function given by f(x) = 3x + 2 . Show that f is invertible and find the inverse of f .
- 13) Show that $f: [-1,1] \to R$ given by $f(x) = \frac{x}{x+2}$ is one-one.

Also find the inverse of the function $f: [-1,1] \rightarrow \text{Range } f$.

- 14) If $f:R\longrightarrow R$ defined by $f(x)=x^2-3x+2$. Find $(f\circ f)(x)$ and $(f\circ f)(1)$.
- 15) Let $A=R-\left\{\frac{7}{5}\right\}$ and $B=R-\left\{\frac{3}{5}\right\}$ and functions $f:A\longrightarrow B$ and $g:B\longrightarrow A$ defined by $f(x)=\frac{3x+4}{5x-7}$ and $g(y)=\frac{7y+4}{5y-3}$. Find $g\circ f$.
- 16) Let f and g are two functions defined on R as f(x)=2x-3 and $g(x)=\frac{3+x}{2}$. Prove that f and g are inverse of each other.