WORK SHEET
 BASED ON THE FOCUS AREA
 FROM CHAPTER 1

1) A function $f: X \longrightarrow Y$ is onto, then the range of f is \qquad
2) The function $f: N \longrightarrow N$ given by $f(x)=2 x$ is
(A) one-one and onto
(B) one-one and not onto
(C) not one-one and onto
(C) not one-one and not onto
3) Which of the following functions is a bijective function. Explain with reasons.

4) Consider the function $f: N \longrightarrow N$ given by $f(x)=3 x+2, x \in N$.

Prove that f is one-one and not onto.
5) Consider the function $f: N \longrightarrow N$ given by $f(x)=x^{3}, x \in N$.

Prove that f injective but not surjective.
6) Consider the function $f: N \longrightarrow N$ given by $f(x)=\left\{\begin{array}{cl}x, & \text { if } x \leq 3 \\ x-1, & \text { if } x>3\end{array}\right.$.

Prove that f is not a one-one function.
7) Consider the function $f:\left[0, \frac{\pi}{2}\right] \longrightarrow R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \longrightarrow R$ given by $g(x)=\cos x$.
(i) Show that f and g are one-one functions.
(ii) Is $f+g$ one-one? Why?
8) The number of bijective functions from $A=\{1,2,3,4,5\}$ to $B=\{a, b, c, d, e\}$ is
A) 24
B) 125
C) 25
D) 120
9) Consider the real functions f and g defined by $f(x)=3-2 x$ and $g(x)=2 x^{2}-1$. Which of them is a bijective function? Explain with reasons.
10) Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Then find $g \circ f$.
11) Find $f \circ g$ and $g \circ f$ for the following real functions given by
(i) $f(x)=|x|$ and $g(x)=|3 x+4|$ and (ii) $f(x)=16 x^{4}$ and $g(x)=x^{\frac{1}{4}}$.
12) Consider the real function given by $f(x)=3 x+2$.

Show that f is invertible and find the inverse of f.
13) Show that $f:[-1,1] \rightarrow R$ given by $f(x)=\frac{x}{x+2}$ is one-one.

Also find the inverse of the function $f:[-1,1] \rightarrow$ Range f.
14) If $f: R \longrightarrow R$ defined by $f(x)=x^{2}-3 x+2$. Find $(f \circ f)(x)$ and $(f \circ f)(1)$.
15) Let $A=R-\left\{\frac{7}{5}\right\}$ and $B=R-\left\{\frac{3}{5}\right\}$ and functions $f: A \longrightarrow B$ and $g: B \longrightarrow A$ defined by $f(x)=\frac{3 x+4}{5 x-7}$ and $g(y)=\frac{7 y+4}{5 y-3}$. Find $g \circ f$.
16) Let f and g are two functions defined on R as $f(x)=2 x-3$ and $g(x)=\frac{3+x}{2}$. Prove that f and g are inverse of each other.

