TEXTBOOK EXERCISES 2.3

1. Which of the following relations are functions? Give reasons. If it is a function, determine its	(ii) t(28) (iii) t(-10) (
domain and range. (i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}	t(C) = 212. Soln: Given $t(C) = \frac{9C}{5} + \frac{1}{5}$
(ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$ (iii) $\{(1, 3), (1, 5), (2, 5)\}.$	(i) $t(0) = \frac{9}{5} \times 0 + 32 =$
Soln: (i) Let $R_i = \{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$. Since the first elements 2, 5, 8, 11, 14 and 17	(ii) $t(28) = \frac{9 \times 28}{5} + 3$
having unique images, R_1 is a function with domain = {2, 5, 8, 11, 14, 17} and Range = {1}. (ii) Let R_2 = {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6),	(iii) $t(-10) = \frac{9}{5} \times -1$
(14, 7)} Since the first elements 2, 4, 6, 8, 10, 12, 14 having	(iv) Given t(C) = $212 \Rightarrow 2$ $\Rightarrow C = \frac{5}{9} \times 180$
unique images, R_2 is a function with domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7}	5. Find the range of eac (i) $f(x) = 2 - 3x, x \in \mathbb{R}$,
(iii) {(1, 3), (1, 5), (2, 5)} is not a function because 1 has two images.	(ii) $f(x) = x^2 + 2$, x is a 1 (iii) $f(x) = x$, x is a real
 2. Find the domain and range of the following real functions: (i) f(x) = - x (ii) f(x) = √9-x². Soln: (i) f(x) = - x is from R → R. ∴ Domain of f = R We know that x ≥ 0, ∀x ∈ R. ∴ - x ≤ 0. ∴ Range of f = (-∞, 0] (Set of non-positive reals) 	Soln: (i) Given $f(x) = 2$ - Since $x > 0, -3x < 0$. $\Rightarrow R_f$ is the set of all (ii) Given $f(x) = x^2 + 2, x$ Since $x^2 \ge 0, x^2 + 2 \ge 2$ \therefore Range of f is the s $\Rightarrow R_f = [2, \infty)$
(ii) Given function $f(x) = \sqrt{9-x^2}$ is a real function.	(iii) Given $f(x) = x$, x is Since x is a real num
f(x) is defined for all real values of x for which $9 - x^2 \ge 0$ (if $9 - x^2 < 0$, f (x) is an imaginary num- ber.) $\Rightarrow x^2 \le 9 \Rightarrow -3 \le x \le 3$ \therefore Domain of f = [-3, 3].	$\therefore R_c = \text{set of a}$
Let $y = f(x) = \sqrt{9 - x^2} \implies y^2 = 9 - x^2$.	
$\Rightarrow x^2 = 9 - y^2 \Rightarrow 9 - y^2 \ge 0 \Rightarrow y^2 \le 9 \Rightarrow -3 \le y \le 3.$ But $y = \sqrt{9 - x^2} \ge 0 \therefore 0 \le y \le 3$	
 ∴ Range of f = [0, 3] 3. A function f is defined by f(x) = 2x - 5. Write down the values of (i) f (0), (ii) f (7), (iii) f (-3). Soln: Given f (x) = 2x - 5. (i) f (0) = 2 × 0 - 5 = 0 - 5 = -5 (ii) f (7) = 2 × 7 - 5 = 14 - 5 = 9 (iii) f (-3) = 2 × -3 - 5 = -6 - 5 = -11 	
4. The function 't' which maps temperature in	-
degree Celsius into temperature in degree Fahr- enheit is defined by $t(C) = \frac{9C}{5} + 32$. Find (i) $t(0)$	
- 이 전 전 - 영화에 지적한 것 같은 것 하는 것 같은 동안생님들이 드 <mark>에</mark> 드 것 같이 가지 않는 것 같은 것 같은 것 같이 것	

(iv) The value of C, when + 32 = 0 + 32 = 3232 = 50.4 + 32 = 82.410 + 32 = -18 + 32 = 14 $212 = \frac{9C}{5} + 32 \Longrightarrow \frac{9C}{5} = 180$ $30 = 5 \times 20 = 100$ ch of the following functions. , x > 0.real number. number. $-3x, x \in \mathbb{R}, x > 0$ $2-3x < 2-0 \Rightarrow f(x) < 2$ reals $< 2 \implies R_f = (-\infty, 2)$. x is real. $\geq 0 + 2 \Rightarrow f(x) \geq 2.$ set of all reals ≥ 2 . a real number. mber, f(x) is also a real number.

 \therefore R_c = set of all real numbers = R.