5. PRINCIPLES OF INHERITANCE AND VARIATION

MENDEL'S LAWS OF INHERITANCE

Gregor Mendel is the Father of genetics.

He conducted some hybridization experiments on garden peas

(Pisum sativum).

www.bankofbiology.com

Mendel selected 7 pairs of true breeding pea varieties:

7 Characters	Contrasting Traits			
7 Characters	Dominant	Recessive		
1. Stem height	Tall	Dwarf		
2. Flower colour	Violet	White		
3. Flower position	Axial	Terminal		
4. Pod shape	Inflated	Constricted		
5. Pod colour	Green	Yellow		
6. Seed shape	Round	Wrinkled		
7. Seed colour	Yellow	Green		
INHERITANCE OF ONE GENE				

INHERITANCE OF ONE GENE

Monohybrid cross: A cross involving 2 plants differing in one character pair. E.g. Mendel crossed tall and dwarf pea plants to study the inheritance of one gene.

- Allele: Alternative forms of a gene. E.g. T (tall) and t (dwarf) are two alleles of a gene for the character height.
- Phenotype: Physical expression of a character.
- Genotype: Genetic constitution of a character. Monohybrid phenotypic Parents: TT х tt Homozygous Homozygous ratio: tall dwarf 3 Tall: 1 Dwarf = <u>3:1</u> Gametes: (T) (t) Monohybrid genotypic F1: Tt (Tall) ratio: Selfing: Τt Τt 1 Homozygous tall (TT) х Gametes: (T)(t)(T)(t)2 Heterozygous tall (Tt) F_2 : 1 Homozygous dwarf (tt) (T) (t)= <u>1:2:1</u> TT Τt (T) (tall) (tall) Τt tt t(tall) (dwarf)

OTHER PATTERNS OF INHERITANCE

1. Incomplete Dominance

- It is an inheritance in which heterozygous offspring shows intermediate character b/w two parental characteristics.
- E.g. Flower colour in snapdragon (dog flower or Antirrhinum sp.) and Mirabilis jalapa (4'O clock plant).

www.bankofbiology.com

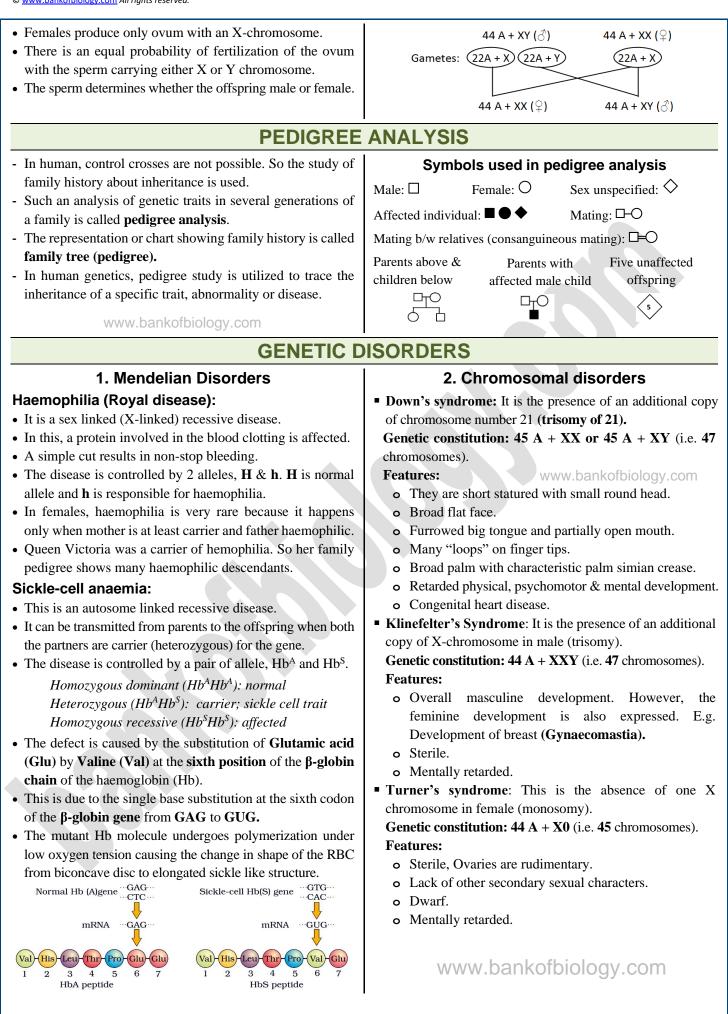
Parents:	RR	X rr	
Re	d flowered	White flower	ed
Gametes:	\mathbb{R}	_ (T)	
F1:	Rr (Pink)		
Selfing: Gametes: (Rr R (r)	x Rr R(r)
F ₂ :	R	1	
R	RR (Red)	Rr (Pink)	
(7)	Rr (Pink)	rr (White)	

Here, cross between homozygous **red** & white produces pink flowered plant. Thus phenotypic & genotypic ratios are same. **Phenotypic ratio=** 1 Red: 2 Pink: 1 White

- Genotypic ratio=
- 1 (RR): 2 (Rr): 1(rr)

2. Co-dominance

- It is the inheritance in which both alleles of a gene are expressed in a hybrid. E.g. ABO blood grouping in human.
- ABO blood groups are controlled by the gene I.
- This gene controls the production of sugar polymers (antigens) that protrude from plasma membrane of RBC.
- The gene I has three alleles I^A, I^B & i.
- $\mathbf{I}^{\mathbf{A}}$ and $\mathbf{I}^{\mathbf{B}}$ produce a slightly different form of the sugar while allele i doesn't produce any sugar.


Alleles from parent 1	Alleles from parent 2	Genotype of offspring	Blood types (phenotype)
I ^A	I ^A	I ^A I ^A	А
I ^A	l [₿]	I ^A I ^B	AB
I ^A	i	l ^A i	А
I ^B	I ^A	I ^A I ^B	AB
I ^B	l [₿]	I ^B I ^B	В
I ^B	i	l ^B i	В
i	i	ii	0

When $\mathbf{I}^{\mathbf{A}}$ and $\mathbf{I}^{\mathbf{B}}$ are present together, they both express their own types of sugars. This is due to co-dominance.

CHROMOSOMAL THEORY OF INHERITANCE

 Proposed by Walter Sutton & Theodore Boveri. Thomas Hunt Morgan proved chromosomal theory of inheritance using fruit flies (<i>Drosophila melanogaster</i>). It is the suitable material for genetic study because, They can grow on simple synthetic medium. Short generation time (life cycle: 12-14 days). 	 Breeding can be done throughout the year. Hundreds of progenies per mating. Male and female flies are easily distinguishable. E.g. Male is smaller than female. It has many types of hereditary variations that can be seen with low power microscopes. 				
SEX DETERMINATION					
 Sex Determination in Humans (XX-XY type) Human has 23 pairs of chromosomes (22 pairs of autosomes and 1 pair of sex chromosomes). www.bankofbiology.com 	 A pair of X-chromosomes (XX) is present in the female, whereas X and Y chromosomes are present in male. During spermatogenesis, males produce 2 types of gametes: 50 % with X-chromosome and 50 % with Y-chromosome. 				

www.bankofbiology.com

WANT ALL CHAPTERS? **Click Here**

For Exam Special Resources Click the Links below:

- CHAPTER-WISE Q & A, ONLINE UNIT TESTS
- → HSE (+1, +2) MODEL QP & ONLINE EXAM SERIES
- EXAM CAPSULE NOTES
- EXAM CAPSULE VIDEOS