Chapter Thirteen NUCLEI

(Prepared by AYYAPPAN C, HSST, GMRHSS KASARAGOD) RADIOACTIVITY

- H. Becquerel discovered radioactivity in 1896.
- Radioactivity is a nuclear phenomenon in which an unstable nucleus undergoes a decay. This is referred to as <u>radioactive</u> <u>decay</u>.
- <u>Three types of radioactive decay occur in</u> <u>nature</u>:
- <u>α-decay</u> in which a helium nucleus (He) is emitted;
- <u>β-decay</u> in which electrons or positrons (particles with the same mass as electrons, but with a charge exactly opposite to that of electron) are emitted;
- <u>**v-decay**</u> in which high energy (hundreds of keV or more) photons are emitted.

Law of radioactive decay

- This law states that the number of nuclei undergoing the decay per unit time is proportional to the total number of nuclei in the sample.
- If a sample contains N undecayed nuclei and let dN nuclei disintegrate in dt second, thus the rate of disintegration

$$\frac{dN}{dt}\alpha - N$$

- The negative sign shows that the number of nuclei decreases with time.
- Thus

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

• Where λ is called the <u>radioactive decay</u> <u>constant or disintegration constant</u>.

or,
$$\frac{\mathrm{d}N}{N} = -\lambda \mathrm{d}t$$

• Now, integrating both sides of the above equation, we get

$$\int_{N_0}^{N} \frac{\mathrm{d}N}{N} = -\lambda \int_{t_0}^{t} \mathrm{d}t$$

or,
$$\ln N - \ln N_0 = -\lambda (t - t_0)$$

- Here N_0 is the number of radioactive nuclei in the sample at some arbitrary time t_0 and N is the number of radioactive nuclei at any subsequent time t.
- Setting $t_0 = 0$

$$\ln \frac{N}{N_{\rm o}} = -\lambda t$$
$$\mathbf{N} = \mathbf{N}_{\rm o} \, \mathbf{e}^{-\lambda t}$$

Thus Decay Rate

 It gives the number of nuclei decaying per unit time

$$R = -\frac{dN}{dt}$$

$$R = -\frac{dN}{dt} = \lambda N_0 e^{-\lambda t}$$
or, $R = R_0 e^{-\lambda t}$

- Here R₀ is the radioactive decay rate at time t = 0, and R is the rate at any subsequent time t.
- Thus $R = \lambda N$
- The total decay rate R of a sample of one or more radionuclide's is called the <u>activity</u> of that sample.
- The <u>SI unit for activity is becquerel</u>, named after the discoverer of radioactivity.
- <u>1 becquerel = 1Bq = 1 decay per second</u>
- An older unit, the <u>curie</u>, is still in common use.

1 curie = 1 Ci = 3.7×10^{10} Bq (decays per second)

Half life period (T_{1/2})

- It is the time in which the number of undecayed nuclei falls into half of its original number.
- Thus it is the time at which both N and R have been reduced to one-half their initial values.

Mean life (τ)

- It is the average life of all the nuclei in a radioactive sample.
- Mean life = total life time of all nuclei / total number of nuclei present initially

$$au = rac{1}{\lambda}$$

The number of nuclei which decay in the time interval t to $t + \Delta t$ is

$$R(t)\Delta t = (\lambda N_0 e^{-\lambda t} \Delta t)$$

Each of them has lived for time t. Thus the total life of all these nuclei would be

$$t \lambda N_0 e^{-\lambda t} \Delta t.$$

Therefore mean life is given by

$$\tau = \frac{\lambda N_0 \int_0^\infty t e^{-\lambda t} dt}{\int_0^\infty t e^{-\lambda t} dt} = \lambda \int_0^\infty t e^{-\lambda t} dt$$

$$N_{0}$$
 N_{0}

One can show by performing this integral that $\tau = 1/\lambda$

We summarise these results with the following: $\ln 2$ $\mathbf{2}$ (1

$$T_{1/2} = \frac{1}{\lambda} = \tau \ln 2$$

Alpha decay

When a nucleus undergoes alpha-decay, it transforms to a different nucleus by emitting an alpha-particle (a helium nucleus)

$$\begin{array}{c} \begin{array}{c} {}^{238}_{92}\mathrm{U} \rightarrow {}^{234}_{90}\mathrm{Th} + {}^{4}_{2}\mathrm{He} \end{array}$$

$$\begin{array}{c} & A \\ & A \\ & Z \end{array} \rightarrow {}^{A-4}_{Z-2}\mathrm{Y} + {}^{4}_{2}\mathrm{He} \end{array}$$

The difference between the initial mass energy and the final mass energy of the decay products is called the **Q** value of the process or the disintegration energy.

$$Q = (m_{\rm X} - m_{\rm Y} - m_{\rm He}) c^2$$

- This energy is shared by the daughter nucleus and the alpha particle, in the form of kinetic energy
- Alpha-decay obeys the radioactive law
- Alpha particles are positively charged particles
- Can be deflected by electric and magnetic fields.
- Can affect photographic plates.

Beta decay

- A nucleus that decays spontaneously by emitting an electron or a positron is said to undergo beta decay.
- In beta-minus decay, a neutron transforms into a proton within the nucleus according to

- In beta minus (β^{-}) decay, an electron is emitted by the nucleus.
- Eg:

 $^{32}_{15}P \rightarrow ^{32}_{16}S + e^- + \overline{\nu}$ ($T_{1/2} = 14.3 \text{ d}$)

- When β^{-} particles are emitted, **the atomic** number increases by one.
- In beta-plus decay, a proton transforms into neutron (inside the nucleus)

$$p \rightarrow n + e^+ + v$$

- Where v is the neutrino
- In beta plus (β +) decay, a positron is emitted by the nucleus,
- Eg:

$$^{22}_{11}$$
Na $\rightarrow ^{22}_{10}$ Ne + e^+ + ν ($T_{1/2}$ = 2.6 y)

When β^+ particles are emitted the **<u>atomic</u>** number decreases by one.

Neutrinos and Antineutrinos

The particles which are emitted from the nucleus along with the electron or positron during the decay process.

• Neutrinos interact only very weakly with matter; they can even penetrate the earth without being absorbed.

Gamma decay

- There are energy levels in a nucleus, just like there are energy levels in atoms.
- When a nucleus is in an excited state, it can make a transition to a lower energy state by the emission of electromagnetic radiation.
- As the energy differences between levels in a nucleus are of the order of MeV, the photons emitted by the nuclei have MeV energies and are called gamma rays.

- Most radionuclides after an alpha decay or a beta decay leave the daughter nucleus in an excited state.
- The daughter nucleus reaches the ground state by a single transition or sometimes by successive transitions by emitting one or more gamma rays.

Properties of Radioactive radiations				
Property	œ	β	Ŷ	
Equivalent to	⁴ ₂ He	$e^{0} e or e^{0} e^{-1}$	Electromagnetic wave	
Charge	Positive	Negative	No charge	
Behaviour in E and B field	Deflected	Deflected	Not Deflected	
Rest mass	Equal to helium	Equal to electron	Zero rest mass	
Speed	$\frac{1}{10}$ th velocity of light	0.99C	С	
Penetrating power	low	high	Very high	
Ionisation power	Very high	high	low	

NUCLEAR ENERGY

- In conventional energy sources like coal or petroleum, energy is released through chemical reactions.
- One kilogram of coal on burning gives 10⁷
 J of energy, whereas 1 kg of uranium, which undergoes fission, will generate on fission 10¹⁴ J of energy.

Nuclear Fission

- Enrico Fermi found that when neutrons bombard various elements, new radioactive elements are produced.
- Eg: $\begin{bmatrix}
 ^{1}_{0}n + ^{235}_{92}U \rightarrow ^{236}_{92}U \rightarrow ^{144}_{56}Ba + ^{89}_{36}Kr + 3^{1}_{0}n
 \end{bmatrix}$

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{236}_{92}U \rightarrow {}^{133}_{51}Sb + {}^{99}_{41}Nb + 4 {}^{1}_{0}n$$

Still another example is

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{140}_{54}Xe + {}^{94}_{38}Sr + 2 {}^{1}_{0}n$$

- The fragment nuclei produced in fission are highly neutron-rich and unstable.
- They are radioactive and emit beta particles in succession until each reaches a stable end product.
- The <u>energy released (the Q value) in the</u> <u>fission reaction of nuclei like uranium</u> is of the order of <u>200 MeV</u> per fissioning nucleus.
- The disintegration energy in fission events first appears as the kinetic energy of the fragments and neutrons.
- Eventually it is transferred to the surrounding matter appearing as heat.
- The source of energy in <u>nuclear reactors</u>, <u>which produce electricity</u>, is <u>nuclear</u> <u>fission</u>.
- The enormous energy released in an atom bomb comes from uncontrolled <u>nuclear</u> fission.

Nuclear reactor

 Neutrons liberated in fission of a uranium nucleus were so energetic that they would escape instead of triggering another fission reaction.

- Slow neutrons have a much higher intrinsic probability of inducing fission in U (235) than fast neutrons.
- The average energy of a neutron produced in fission of U (235) is 2 MeV.
- In reactors, light nuclei called <u>moderators</u> are provided along with the fissionable nuclei for <u>slowing down fast neutrons</u>.
- The moderators commonly used are water, heavy water (D2O) and graphite.
- The Apsara reactor at the Bhabha Atomic Research Centre (BARC), Mumbai, uses water as moderator.
- The other Indian reactors, which are used for power production, use heavy water as moderator.

Multiplication factor

- It is the ratio of number of fission produced by a given generation of neutrons to the number of fission of the preceding generation.
- It is the measure of the growth rate of the neutrons in the reactor.
- For K = 1, the operation of the reactor is said to be critical, which is what we wish it to be for steady power operation.
- If *K* becomes greater than one, the reaction rate and the reactor power increases exponentially.
- Unless the factor *K* is brought down very close to unity, the reactor will become supercritical and can even explode.
- The explosion of the Chernobyl reactor in Ukraine in 1986 is a sad reminder that accidents in a nuclear reactor can be catastrophic.
- The reaction rate is controlled through <u>control-rods</u> made out of neutronabsorbing material such as <u>cadmium</u>.
- In addition to control rods, reactors are provided with <u>safety rods</u> which, when required, can be inserted into the reactor and K can be reduced rapidly to less than unity.

 The abundant U(238) isotope, which does not fission, on capturing a neutron leads to the formation of plutonium.

 Plutonium is highly radioactive and can also undergo fission under bombardment by slow neutrons

Pressurized-water reactor

- In such a reactor, water is used both as the moderator and as the heat transfer medium
- In the primary-loop, water is circulated through the reactor vessel and transfers energy at high temperature and pressure (at about 600 K and 150 atm) to the steam generator, which is part of the secondaryloop.
- In the steam generator, evaporation provides high-pressure steam to operate the turbine that drives the electric generator.
- The low-pressure steam from the turbine is cooled and condensed to water and forced back into the steam generator.
- A kilogram of U(235) on complete fission generates about 3 × 10⁴ MW.
- in nuclear reactions highly radioactive elements are continuously produced.
- Therefore, an unavoidable feature of reactor operation is the accumulation of radioactive waste, including both fission products and heavy *transuranic elements* such as plutonium and americium.

Nuclear fusion

• Energy can be released if two light nuclei combine to form a single larger nucleus, a process called *nuclear fusion*.

 ${}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{2}_{1}H + e^{*} + v + 0.42 \text{ MeV}$ ${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{2}He + n + 3.27 \text{ MeV}$ ${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{1}H + {}^{1}_{1}H + 4.03 \text{ MeV}$

- The fusion reaction in the sun is a multistep process in which hydrogen is burned into helium, hydrogen being the 'fuel' and helium the 'ashes'.
- The <u>proton-proton (p, p) cycle by which</u> <u>this occurs is represented</u> by the following sets of reactions:.

${}_{1}^{1}\text{H} + {}_{1}^{1}\text{H} \rightarrow {}_{1}^{2}\text{H} + e^{+} + v + 0.42 \text{ MeV}$	(i)
$e^+ + e^- \rightarrow \gamma + \gamma + 1.02 \text{ MeV}$	(ii)
${}^{2}_{1}H + {}^{1}_{1}H \rightarrow {}^{3}_{2}He + \gamma + 5.49 \text{ MeV}$	(iii)
${}^{3}_{2}H + {}^{3}_{2}H \rightarrow {}^{4}_{2}He + {}^{1}_{1}H + {}^{1}_{1}H + 12.86 \text{ MeV}$	(iv)
The combined reaction is	

The combined reaction is

 $4_{1}^{1}\text{H} + 2e^{-} \rightarrow {}_{2}^{4}\text{He} + 2\nu + 6\gamma + 26.7 \text{ MeV}$ or $(4_{1}^{1}\text{H} + 4e^{-}) \rightarrow ({}_{2}^{4}\text{He} + 2e^{-}) + 2\nu + 6\gamma + 26.7 \text{ MeV}$

- In sun it has been going on for about 5 × 10⁹ y, and calculations show that there is enough hydrogen to keep the sun going for about the same time into the future.
- In about 5 billion years, however, the sun's core, which by that time will be largely helium, will begin to cool and the sun will start to collapse under its own gravity.
- This will raise the core temperature and cause the outer envelope to expand, turning the sun into what is called a *red giant*.
- If the core temperature increases to 10⁸ K again, energy can be produced through fusion once more this time by burning helium to make carbon.

Controlled thermonuclear fusion

 The first thermonuclear reaction on earth occurred at Eniwetok Atoll on November 1, 1952, when USA exploded a fusion device, generating energy equivalent to 10 million tons of TNT (one ton of TNT on explosion releases 2.6 × 10'22 MeV of energy).

A sustained and controllable source of fusion power is considerably more difficult to achieve.
