Chapter Eleven

DUAL NATURE OF RADIATION AND MATTER

(Prepared by AYYAPPAN C, HSST, GMRHSS KASARAGOD) <u>PHOTOELECTRIC EFFECT</u>

- The phenomenon of ejection of electrons when light of suitable frequency falls on it is called photoelectric effect.
- Photoelectric emission was discovered in by <u>Heinrich Hertz</u>.
- In photoelectric effect the light energy is converted to electrical energy.
- The photo (light)-generated electrons are called *photoelectrons* and the current is called *photo current*.
- Substances that respond to light are called *photo sensitive substances.*
- Metals like **zinc, cadmium, magnesium** etc respond only to **ultra violet light**.
- Alkali metals such as lithium, sodium, potassium, cesium and rubidium are sensitive to visible light.

Hallwachs' and Lenard's observations

 Wilhelm Hallwachs and Philipp Lenard studied photo electric effect in detail using an evacuated glass tube with two zinc plates as electrodes.

Experimental set up

Observations

- When ultraviolet radiations were allowed to fall on the emitter plate current flows in the circuit.
- When collector plate is illuminated no current flows.
- When the frequency of incident radiation is less than a certain minimum value no photo electrons emission is possible. This

minimum frequency is called <u>threshold</u> <u>frequency.</u>

• Threshold frequency depends on the nature of the metal.

Laws of Photoelectric emission

- The photoelectric current is directly proportional to the intensity of incident light and independent of the frequency.
- Kinetic energy of emitted photo electrons depends on the frequency and does not depend on intensity of radiation.
- For each metal there is a threshold frequency, below which no photoelectron emission is possible.
- The photoelectric emission is an instantaneous process.

EINSTEIN'S EXPLANATION OF PHOTO ELECTRIC EFFECT

- Einstein explained photoelectric effect based on quantum theory.
- According to quantum theory, light contain photons having energy hv.
- When a photon of energy **hv** is incident on a metal surface, electrons are emitted.
- A part of the photon energy is used as the work function and the remaining part of the photon energy appears as the kinetic energy of photoelectrons.

Einstein's photoelectric equation

- Photon Energy = Work function + maximum K.E. of photoelectron.
- That is

$$h\nu = \phi_0 + K_{\max}$$

Thus
$$K_{
m max} = hv - \phi_{
m O}$$

- But the work function is given by $\phi_0 = h\nu_0$, where ν_0 is the **threshold frequency**.
- Therefore

$$K_{\max} = h(\nu - \nu_0)$$

• This equation is the Einstein's photo electric equation.

<u>Frequency - stopping potential graph (for</u> <u>different metals)</u>

• We have, the photo electric equation,

$$K_{\rm max} = hv - \phi_0$$

• Also in terms of stopping potential

$$K_{\text{max}} = e V_{\text{o}}$$

Thus $eV_0 = hv - \phi_0$

- That is $V_0 = \frac{h}{a} \nu \frac{\phi_0}{a}$
- It predicts that the V₀ versus v curve is a straight line with slope = (h/e), independent of the nature of the material.

- Thus Planck's constant =slope X charge of electron.
- The y-intercept is $-\frac{\phi_0}{e}$, therefore the

work function = - (y intercept) X charge of electron.

Photoelectric cell

 Photoelectric cell is a device used to convert light energy into electric energy using the principle of photoelectric effect.

PARTICLE NATURE OF LIGHT:

THE PHOTON

 In interaction of radiation with matter, radiation behaves as if it is made up of particles called photons.

Properties of Photons

- Each photon has energy E (=hv) and momentum p (= h v/c), and speed c, the speed of light.
- All photons of light of a particular frequency ν, or wavelength λ, have the same energy E (=hv = hc/λ) and momentum p (= hv/c = h/λ), independent of intensity of light.
- By increasing the intensity of light of given wavelength, there is only an increase in the number of photons per second crossing a given area, with each photon having the same energy.
- The photon energy is independent of intensity of radiation.
- Photons are electrically neutral and are not deflected by electric and magnetic fields.
- In a photon-particle collision (such as photon-electron collision), the total energy and total momentum are conserved.
- However, the number of photons may not be conserved in a collision. The photon may be absorbed or a new photon may be created.

Dual nature of radiation

 Radiation has wave nature as well as particle nature. This is called the dual nature of radiation.

