The table below shows the number of children in a class, sorted according to their heights.

Height (cm)	Number of children
130 - 140	7
140 - 150	9
150 - 160	10
160 - 170	10
170 - 180	9

If the students are directed to stand in a line according to the order of their heights starting from the smallest, then

- (a) The height of the child at what position is taken as the median?
- (b) What is the assumed height of the child in the 17th position?
- (c) Find the median height. (5)

Number of children
7
16
26
36
45

$$\frac{45+1}{2} = \frac{46}{2} = 23$$

- (a) The height of the 23rd child is taken as the median height.
- (b) The height of the 23rd child is between 150 and 160. Height between 150 and 160 = 10 cm. Number of children between these heights = 10. Dividing this 10 cm equally among 10, each part is $\frac{10}{10}$ = 1 cm.

The height of the 17th child is in the middle of 150 and 151.

Height of the 17th child'=
$$(150 + 151) \div 2$$

= 150.5 cm

(c) 23rd term of an arithmetic sequence whose 17th term is 150.5 and common difference is 1

= 17th term + 6 common difference
=
$$150.5 + 6 \times 1$$

$$= 150.5 + 6 = 156.5$$

Mean height = 156.5 cm